Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface

Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-11, Vol.11 (43), p.15312-15321
Hauptverfasser: Rui Rui Yang, Cheng, Fangrui, Bang Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15321
container_issue 43
container_start_page 15312
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 11
creator Rui Rui Yang
Cheng, Fangrui
Bang Lan
description Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.
doi_str_mv 10.1039/d3tc02184j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887257213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887257213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7fa7f4c32215e297d3932efa800ca6c682ff0bb150dcb3a218c5b28c76d211593</originalsourceid><addsrcrecordid>eNo9j01LAzEYhIMoWGov_oKAl_awNXmz2WRvytJaobYe6rlks4ndUjdrkvXj3xtQnMsMDDzDIHRNyZwSVt42LGoCVObHMzQCwkkmOMvP_zMUl2gSwpEkSVrIohyhr2dvrPGqPhlsnf9UvsGmM_71G0evupA63HZ4V08rCiu5gRlMN1s2Y3eVIvNyMaTtJ7fN8aFNFK8PrVYn3DvvhoC1e-tdaKMJ-KNVOB5MYkXjrdLmCl1YdQpm8udj9LJc7KpVtt4-PFb366ynksVMWCVsrhkA5QZK0bCSgbFKEqJVoQsJ1pK6ppw0umYqvde8BqlF0QClvGRjdPPL7b17H0yI-6MbfJcm9yClAC6AMvYD9F1csA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887257213</pqid></control><display><type>article</type><title>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Rui Rui Yang ; Cheng, Fangrui ; Bang Lan</creator><creatorcontrib>Rui Rui Yang ; Cheng, Fangrui ; Bang Lan</creatorcontrib><description>Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc02184j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Composite materials ; Electron microscopy ; Energy transfer ; Europium ; Interface stability ; Interfacial energy ; Light emitting diodes ; Luminescence ; Microscopy ; Optical properties ; Phosphors ; Photoluminescence ; Porous materials ; Redox reactions ; Terbium ; Thermal stability ; Ultraviolet radiation</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-11, Vol.11 (43), p.15312-15321</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rui Rui Yang</creatorcontrib><creatorcontrib>Cheng, Fangrui</creatorcontrib><creatorcontrib>Bang Lan</creatorcontrib><title>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.</description><subject>Composite materials</subject><subject>Electron microscopy</subject><subject>Energy transfer</subject><subject>Europium</subject><subject>Interface stability</subject><subject>Interfacial energy</subject><subject>Light emitting diodes</subject><subject>Luminescence</subject><subject>Microscopy</subject><subject>Optical properties</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Porous materials</subject><subject>Redox reactions</subject><subject>Terbium</subject><subject>Thermal stability</subject><subject>Ultraviolet radiation</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEYhIMoWGov_oKAl_awNXmz2WRvytJaobYe6rlks4ndUjdrkvXj3xtQnMsMDDzDIHRNyZwSVt42LGoCVObHMzQCwkkmOMvP_zMUl2gSwpEkSVrIohyhr2dvrPGqPhlsnf9UvsGmM_71G0evupA63HZ4V08rCiu5gRlMN1s2Y3eVIvNyMaTtJ7fN8aFNFK8PrVYn3DvvhoC1e-tdaKMJ-KNVOB5MYkXjrdLmCl1YdQpm8udj9LJc7KpVtt4-PFb366ynksVMWCVsrhkA5QZK0bCSgbFKEqJVoQsJ1pK6ppw0umYqvde8BqlF0QClvGRjdPPL7b17H0yI-6MbfJcm9yClAC6AMvYD9F1csA</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Rui Rui Yang</creator><creator>Cheng, Fangrui</creator><creator>Bang Lan</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20231109</creationdate><title>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</title><author>Rui Rui Yang ; Cheng, Fangrui ; Bang Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7fa7f4c32215e297d3932efa800ca6c682ff0bb150dcb3a218c5b28c76d211593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite materials</topic><topic>Electron microscopy</topic><topic>Energy transfer</topic><topic>Europium</topic><topic>Interface stability</topic><topic>Interfacial energy</topic><topic>Light emitting diodes</topic><topic>Luminescence</topic><topic>Microscopy</topic><topic>Optical properties</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Porous materials</topic><topic>Redox reactions</topic><topic>Terbium</topic><topic>Thermal stability</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui Rui Yang</creatorcontrib><creatorcontrib>Cheng, Fangrui</creatorcontrib><creatorcontrib>Bang Lan</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui Rui Yang</au><au>Cheng, Fangrui</au><au>Bang Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-11-09</date><risdate>2023</risdate><volume>11</volume><issue>43</issue><spage>15312</spage><epage>15321</epage><pages>15312-15321</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc02184j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-11, Vol.11 (43), p.15312-15321
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2887257213
source Royal Society Of Chemistry Journals 2008-
subjects Composite materials
Electron microscopy
Energy transfer
Europium
Interface stability
Interfacial energy
Light emitting diodes
Luminescence
Microscopy
Optical properties
Phosphors
Photoluminescence
Porous materials
Redox reactions
Terbium
Thermal stability
Ultraviolet radiation
title Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferable%20forward%20energy%20transfer%20in%20Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4%20hierarchical%20porous%20composites%20via%20the%20interface&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Rui%20Rui%20Yang&rft.date=2023-11-09&rft.volume=11&rft.issue=43&rft.spage=15312&rft.epage=15321&rft.pages=15312-15321&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc02184j&rft_dat=%3Cproquest%3E2887257213%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887257213&rft_id=info:pmid/&rfr_iscdi=true