Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface
Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-11, Vol.11 (43), p.15312-15321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15321 |
---|---|
container_issue | 43 |
container_start_page | 15312 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 11 |
creator | Rui Rui Yang Cheng, Fangrui Bang Lan |
description | Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes. |
doi_str_mv | 10.1039/d3tc02184j |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887257213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887257213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7fa7f4c32215e297d3932efa800ca6c682ff0bb150dcb3a218c5b28c76d211593</originalsourceid><addsrcrecordid>eNo9j01LAzEYhIMoWGov_oKAl_awNXmz2WRvytJaobYe6rlks4ndUjdrkvXj3xtQnMsMDDzDIHRNyZwSVt42LGoCVObHMzQCwkkmOMvP_zMUl2gSwpEkSVrIohyhr2dvrPGqPhlsnf9UvsGmM_71G0evupA63HZ4V08rCiu5gRlMN1s2Y3eVIvNyMaTtJ7fN8aFNFK8PrVYn3DvvhoC1e-tdaKMJ-KNVOB5MYkXjrdLmCl1YdQpm8udj9LJc7KpVtt4-PFb366ynksVMWCVsrhkA5QZK0bCSgbFKEqJVoQsJ1pK6ppw0umYqvde8BqlF0QClvGRjdPPL7b17H0yI-6MbfJcm9yClAC6AMvYD9F1csA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887257213</pqid></control><display><type>article</type><title>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Rui Rui Yang ; Cheng, Fangrui ; Bang Lan</creator><creatorcontrib>Rui Rui Yang ; Cheng, Fangrui ; Bang Lan</creatorcontrib><description>Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc02184j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Composite materials ; Electron microscopy ; Energy transfer ; Europium ; Interface stability ; Interfacial energy ; Light emitting diodes ; Luminescence ; Microscopy ; Optical properties ; Phosphors ; Photoluminescence ; Porous materials ; Redox reactions ; Terbium ; Thermal stability ; Ultraviolet radiation</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-11, Vol.11 (43), p.15312-15321</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rui Rui Yang</creatorcontrib><creatorcontrib>Cheng, Fangrui</creatorcontrib><creatorcontrib>Bang Lan</creatorcontrib><title>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.</description><subject>Composite materials</subject><subject>Electron microscopy</subject><subject>Energy transfer</subject><subject>Europium</subject><subject>Interface stability</subject><subject>Interfacial energy</subject><subject>Light emitting diodes</subject><subject>Luminescence</subject><subject>Microscopy</subject><subject>Optical properties</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Porous materials</subject><subject>Redox reactions</subject><subject>Terbium</subject><subject>Thermal stability</subject><subject>Ultraviolet radiation</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEYhIMoWGov_oKAl_awNXmz2WRvytJaobYe6rlks4ndUjdrkvXj3xtQnMsMDDzDIHRNyZwSVt42LGoCVObHMzQCwkkmOMvP_zMUl2gSwpEkSVrIohyhr2dvrPGqPhlsnf9UvsGmM_71G0evupA63HZ4V08rCiu5gRlMN1s2Y3eVIvNyMaTtJ7fN8aFNFK8PrVYn3DvvhoC1e-tdaKMJ-KNVOB5MYkXjrdLmCl1YdQpm8udj9LJc7KpVtt4-PFb366ynksVMWCVsrhkA5QZK0bCSgbFKEqJVoQsJ1pK6ppw0umYqvde8BqlF0QClvGRjdPPL7b17H0yI-6MbfJcm9yClAC6AMvYD9F1csA</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Rui Rui Yang</creator><creator>Cheng, Fangrui</creator><creator>Bang Lan</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20231109</creationdate><title>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</title><author>Rui Rui Yang ; Cheng, Fangrui ; Bang Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7fa7f4c32215e297d3932efa800ca6c682ff0bb150dcb3a218c5b28c76d211593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite materials</topic><topic>Electron microscopy</topic><topic>Energy transfer</topic><topic>Europium</topic><topic>Interface stability</topic><topic>Interfacial energy</topic><topic>Light emitting diodes</topic><topic>Luminescence</topic><topic>Microscopy</topic><topic>Optical properties</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Porous materials</topic><topic>Redox reactions</topic><topic>Terbium</topic><topic>Thermal stability</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui Rui Yang</creatorcontrib><creatorcontrib>Cheng, Fangrui</creatorcontrib><creatorcontrib>Bang Lan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rui Rui Yang</au><au>Cheng, Fangrui</au><au>Bang Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-11-09</date><risdate>2023</risdate><volume>11</volume><issue>43</issue><spage>15312</spage><epage>15321</epage><pages>15312-15321</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Trivalent rare earth Eu3+-doped luminescent materials have been used successfully for illumination and displays due to their narrow emission lines and extreme stability. Extending the excitation band to the UV, near UV and blue region via doping lanthanide ions as a sensitizer is highly desired for white LED application. However, the complex redox reaction and forward/backward energy-transfer pathway between the sensitizer ion and Eu3+ ion in the same lattice of the phosphor host limits the potential of this strategy. Herein, we present the luminescence properties of hierarchical porous composite materials with the formula Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 and report how interfacial energy-transfer enhanced the absorption range of the Eu3+-doped material in the UV region. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images illustrated that the obtained Ca0.9Eu0.1MoO4 had a hierarchical porous structure, and the Tb(C12H8N2)2(NO3)3 was evenly filled inside the holes or the surface. The photoluminescence and decay data indicated the existence of interfacial forward energy transfer from Tb3+ → Eu3+. Furthermore, the thermal stability of the composited Tb(C12H8N2)2(NO3)3 was improved, indicating the potential of the composite materials for application in UV light-emitting diodes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc02184j</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-11, Vol.11 (43), p.15312-15321 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2887257213 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Composite materials Electron microscopy Energy transfer Europium Interface stability Interfacial energy Light emitting diodes Luminescence Microscopy Optical properties Phosphors Photoluminescence Porous materials Redox reactions Terbium Thermal stability Ultraviolet radiation |
title | Preferable forward energy transfer in Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4 hierarchical porous composites via the interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferable%20forward%20energy%20transfer%20in%20Tb(C12H8N2)2(NO3)3@Ca0.9Eu0.1MoO4%20hierarchical%20porous%20composites%20via%20the%20interface&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Rui%20Rui%20Yang&rft.date=2023-11-09&rft.volume=11&rft.issue=43&rft.spage=15312&rft.epage=15321&rft.pages=15312-15321&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc02184j&rft_dat=%3Cproquest%3E2887257213%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887257213&rft_id=info:pmid/&rfr_iscdi=true |