Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries
Vanadium‐based intercalation materials have attracted considerable attention for aqueous zinc‐ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy‐enriched V...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-11, Vol.33 (46) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 46 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Jia‐Jia Ye Pei‐Hua Li Hao‐Ran Zhang Zong‐Yin Song Fan, Tianju Zhang, Wanqun Tian, Jie Huang, Tao Qian, Yitai Hou, Zhiguo Netanel Shpigel Li‐Feng Chen Shi Xue Dou |
description | Vanadium‐based intercalation materials have attracted considerable attention for aqueous zinc‐ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy‐enriched V2O5 structures (Zn0.125V2O5·0.95H2O nanoflowers, Ov‐ZVO) with expanded interlamellar space and excellent structural stability are prepared for superior ZIBs. In situ electron paramagnetic resonance (EPR) and X‐ray diffraction (XRD) characterization revealed that numerous oxygen vacancies are generated at a relatively low reaction temperature because of partially escaped lattice water. In situ spectroscopy and density functional theory (DFT) calculations unraveled that the existence of oxygen vacancies lowered Zn2+ diffusion barriers in Ov‐ZVO and weakened the interaction between Zn and O atoms, thus contributing to excellent electrochemical performance. The Zn||Ov‐ZVO battery displayed a remarkable capacity of 402 mAh g−1 at 0.1 A g−1 and impressive energy output of 193 Wh kg−1 at 2673 W kg−1. As a proof of concept, the Zn||Ov‐ZVO pouch cell can reach a high capacity of 350 mAh g−1 at 0.5 A g−1, demonstrating its enormous potential for practical application. This study provides fundamental insights into formation of oxygen‐vacant nanostructures and generated oxygen vacancies improving electrochemical performance, directing new pathways toward defect‐functionalized advanced materials. |
doi_str_mv | 10.1002/adfm.202305659 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2887200408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887200408</sourcerecordid><originalsourceid>FETCH-LOGICAL-p223t-bbee3e9c0a55f6c74d6061c8dc8c87c7f8e504be342751ea3d414c504060b3fe3</originalsourceid><addsrcrecordid>eNo9jktLAzEUhYMoWKtb1wHXU_OYPLqsxUexMouqiJuSyWRKSk3GPEB3_gR_o7_EiOLqHu797jkHgFOMJhghcq66_mVCEKGIcTbdAyPMMa8oInL_X-OnQ3AU4xYhLAStR8DfKWeHvFPJug1s3t43xsFHpZXT1kSYPFwNOcCFd_DWOpOsjtAWgjQMrlLIOuVQuN4HuMqDCbaI2Ws2Pkf4bJ3--vj8-b1QKZWjicfgoFe7aE7-5hg8XF3ez2-qZXO9mM-W1UAITVXbGkPNVCPFWM-1qDuOONay01JLoUUvDUN1a2hNBMNG0a7GtS4rxFFLe0PH4OzXdwi-1IlpvfU5uBK5JlIKggoq6TdoiV2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887200408</pqid></control><display><type>article</type><title>Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jia‐Jia Ye ; Pei‐Hua Li ; Hao‐Ran Zhang ; Zong‐Yin Song ; Fan, Tianju ; Zhang, Wanqun ; Tian, Jie ; Huang, Tao ; Qian, Yitai ; Hou, Zhiguo ; Netanel Shpigel ; Li‐Feng Chen ; Shi Xue Dou</creator><creatorcontrib>Jia‐Jia Ye ; Pei‐Hua Li ; Hao‐Ran Zhang ; Zong‐Yin Song ; Fan, Tianju ; Zhang, Wanqun ; Tian, Jie ; Huang, Tao ; Qian, Yitai ; Hou, Zhiguo ; Netanel Shpigel ; Li‐Feng Chen ; Shi Xue Dou</creatorcontrib><description>Vanadium‐based intercalation materials have attracted considerable attention for aqueous zinc‐ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy‐enriched V2O5 structures (Zn0.125V2O5·0.95H2O nanoflowers, Ov‐ZVO) with expanded interlamellar space and excellent structural stability are prepared for superior ZIBs. In situ electron paramagnetic resonance (EPR) and X‐ray diffraction (XRD) characterization revealed that numerous oxygen vacancies are generated at a relatively low reaction temperature because of partially escaped lattice water. In situ spectroscopy and density functional theory (DFT) calculations unraveled that the existence of oxygen vacancies lowered Zn2+ diffusion barriers in Ov‐ZVO and weakened the interaction between Zn and O atoms, thus contributing to excellent electrochemical performance. The Zn||Ov‐ZVO battery displayed a remarkable capacity of 402 mAh g−1 at 0.1 A g−1 and impressive energy output of 193 Wh kg−1 at 2673 W kg−1. As a proof of concept, the Zn||Ov‐ZVO pouch cell can reach a high capacity of 350 mAh g−1 at 0.5 A g−1, demonstrating its enormous potential for practical application. This study provides fundamental insights into formation of oxygen‐vacant nanostructures and generated oxygen vacancies improving electrochemical performance, directing new pathways toward defect‐functionalized advanced materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305659</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Density functional theory ; Diffusion barriers ; Electrochemical analysis ; Electron paramagnetic resonance ; Materials science ; Oxygen enrichment ; Structural stability ; Vanadium pentoxide ; Zinc</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (46)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jia‐Jia Ye</creatorcontrib><creatorcontrib>Pei‐Hua Li</creatorcontrib><creatorcontrib>Hao‐Ran Zhang</creatorcontrib><creatorcontrib>Zong‐Yin Song</creatorcontrib><creatorcontrib>Fan, Tianju</creatorcontrib><creatorcontrib>Zhang, Wanqun</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><creatorcontrib>Hou, Zhiguo</creatorcontrib><creatorcontrib>Netanel Shpigel</creatorcontrib><creatorcontrib>Li‐Feng Chen</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><title>Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries</title><title>Advanced functional materials</title><description>Vanadium‐based intercalation materials have attracted considerable attention for aqueous zinc‐ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy‐enriched V2O5 structures (Zn0.125V2O5·0.95H2O nanoflowers, Ov‐ZVO) with expanded interlamellar space and excellent structural stability are prepared for superior ZIBs. In situ electron paramagnetic resonance (EPR) and X‐ray diffraction (XRD) characterization revealed that numerous oxygen vacancies are generated at a relatively low reaction temperature because of partially escaped lattice water. In situ spectroscopy and density functional theory (DFT) calculations unraveled that the existence of oxygen vacancies lowered Zn2+ diffusion barriers in Ov‐ZVO and weakened the interaction between Zn and O atoms, thus contributing to excellent electrochemical performance. The Zn||Ov‐ZVO battery displayed a remarkable capacity of 402 mAh g−1 at 0.1 A g−1 and impressive energy output of 193 Wh kg−1 at 2673 W kg−1. As a proof of concept, the Zn||Ov‐ZVO pouch cell can reach a high capacity of 350 mAh g−1 at 0.5 A g−1, demonstrating its enormous potential for practical application. This study provides fundamental insights into formation of oxygen‐vacant nanostructures and generated oxygen vacancies improving electrochemical performance, directing new pathways toward defect‐functionalized advanced materials.</description><subject>Density functional theory</subject><subject>Diffusion barriers</subject><subject>Electrochemical analysis</subject><subject>Electron paramagnetic resonance</subject><subject>Materials science</subject><subject>Oxygen enrichment</subject><subject>Structural stability</subject><subject>Vanadium pentoxide</subject><subject>Zinc</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jktLAzEUhYMoWKtb1wHXU_OYPLqsxUexMouqiJuSyWRKSk3GPEB3_gR_o7_EiOLqHu797jkHgFOMJhghcq66_mVCEKGIcTbdAyPMMa8oInL_X-OnQ3AU4xYhLAStR8DfKWeHvFPJug1s3t43xsFHpZXT1kSYPFwNOcCFd_DWOpOsjtAWgjQMrlLIOuVQuN4HuMqDCbaI2Ws2Pkf4bJ3--vj8-b1QKZWjicfgoFe7aE7-5hg8XF3ez2-qZXO9mM-W1UAITVXbGkPNVCPFWM-1qDuOONay01JLoUUvDUN1a2hNBMNG0a7GtS4rxFFLe0PH4OzXdwi-1IlpvfU5uBK5JlIKggoq6TdoiV2L</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Jia‐Jia Ye</creator><creator>Pei‐Hua Li</creator><creator>Hao‐Ran Zhang</creator><creator>Zong‐Yin Song</creator><creator>Fan, Tianju</creator><creator>Zhang, Wanqun</creator><creator>Tian, Jie</creator><creator>Huang, Tao</creator><creator>Qian, Yitai</creator><creator>Hou, Zhiguo</creator><creator>Netanel Shpigel</creator><creator>Li‐Feng Chen</creator><creator>Shi Xue Dou</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20231101</creationdate><title>Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries</title><author>Jia‐Jia Ye ; Pei‐Hua Li ; Hao‐Ran Zhang ; Zong‐Yin Song ; Fan, Tianju ; Zhang, Wanqun ; Tian, Jie ; Huang, Tao ; Qian, Yitai ; Hou, Zhiguo ; Netanel Shpigel ; Li‐Feng Chen ; Shi Xue Dou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p223t-bbee3e9c0a55f6c74d6061c8dc8c87c7f8e504be342751ea3d414c504060b3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Density functional theory</topic><topic>Diffusion barriers</topic><topic>Electrochemical analysis</topic><topic>Electron paramagnetic resonance</topic><topic>Materials science</topic><topic>Oxygen enrichment</topic><topic>Structural stability</topic><topic>Vanadium pentoxide</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia‐Jia Ye</creatorcontrib><creatorcontrib>Pei‐Hua Li</creatorcontrib><creatorcontrib>Hao‐Ran Zhang</creatorcontrib><creatorcontrib>Zong‐Yin Song</creatorcontrib><creatorcontrib>Fan, Tianju</creatorcontrib><creatorcontrib>Zhang, Wanqun</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><creatorcontrib>Hou, Zhiguo</creatorcontrib><creatorcontrib>Netanel Shpigel</creatorcontrib><creatorcontrib>Li‐Feng Chen</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia‐Jia Ye</au><au>Pei‐Hua Li</au><au>Hao‐Ran Zhang</au><au>Zong‐Yin Song</au><au>Fan, Tianju</au><au>Zhang, Wanqun</au><au>Tian, Jie</au><au>Huang, Tao</au><au>Qian, Yitai</au><au>Hou, Zhiguo</au><au>Netanel Shpigel</au><au>Li‐Feng Chen</au><au>Shi Xue Dou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>46</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Vanadium‐based intercalation materials have attracted considerable attention for aqueous zinc‐ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy‐enriched V2O5 structures (Zn0.125V2O5·0.95H2O nanoflowers, Ov‐ZVO) with expanded interlamellar space and excellent structural stability are prepared for superior ZIBs. In situ electron paramagnetic resonance (EPR) and X‐ray diffraction (XRD) characterization revealed that numerous oxygen vacancies are generated at a relatively low reaction temperature because of partially escaped lattice water. In situ spectroscopy and density functional theory (DFT) calculations unraveled that the existence of oxygen vacancies lowered Zn2+ diffusion barriers in Ov‐ZVO and weakened the interaction between Zn and O atoms, thus contributing to excellent electrochemical performance. The Zn||Ov‐ZVO battery displayed a remarkable capacity of 402 mAh g−1 at 0.1 A g−1 and impressive energy output of 193 Wh kg−1 at 2673 W kg−1. As a proof of concept, the Zn||Ov‐ZVO pouch cell can reach a high capacity of 350 mAh g−1 at 0.5 A g−1, demonstrating its enormous potential for practical application. This study provides fundamental insights into formation of oxygen‐vacant nanostructures and generated oxygen vacancies improving electrochemical performance, directing new pathways toward defect‐functionalized advanced materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202305659</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-11, Vol.33 (46) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2887200408 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Density functional theory Diffusion barriers Electrochemical analysis Electron paramagnetic resonance Materials science Oxygen enrichment Structural stability Vanadium pentoxide Zinc |
title | Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Oxygen%20Vacancies%20to%20Spur%20Ion%20Kinetics%20in%20V2O5%20Structures%20for%20Superior%20Aqueous%20Zinc%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Jia%E2%80%90Jia%20Ye&rft.date=2023-11-01&rft.volume=33&rft.issue=46&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305659&rft_dat=%3Cproquest%3E2887200408%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887200408&rft_id=info:pmid/&rfr_iscdi=true |