Hypothesis Network Planned Exploration for Rapid Meta-Reinforcement Learning Adaptation

Meta Reinforcement Learning (Meta RL) trains agents that adapt to fast-changing environments and tasks. Current strategies often lose adaption efficiency due to the passive nature of model exploration, causing delayed understanding of new transition dynamics. This results in particularly fast-evolvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Jacobson, Maxwell Joseph, Xue, Yexiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meta Reinforcement Learning (Meta RL) trains agents that adapt to fast-changing environments and tasks. Current strategies often lose adaption efficiency due to the passive nature of model exploration, causing delayed understanding of new transition dynamics. This results in particularly fast-evolving tasks being impossible to solve. We propose a novel approach, Hypothesis Network Planned Exploration (HyPE), that integrates an active and planned exploration process via the hypothesis network to optimize adaptation speed. HyPE uses a generative hypothesis network to form potential models of state transition dynamics, then eliminates incorrect models through strategically devised experiments. Evaluated on a symbolic version of the Alchemy game, HyPE outpaces baseline methods in adaptation speed and model accuracy, validating its potential in enhancing reinforcement learning adaptation in rapidly evolving settings.
ISSN:2331-8422