B.1 Imaging metabolic changes in white matter following ischemic and hemorrhagic stroke onset in an animal model
Background: What matter (WM) is particularly sensitive to ischemia and WM changes are observed following onset of ischemic stroke as well as during expansion of the stroke lesion. To better correlate neurobehavioural and functional assessments in our models we have developed imaging methods to aid i...
Gespeichert in:
Veröffentlicht in: | Canadian journal of neurological sciences 2023-06, Vol.50 (s2), p.S50-S50 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S50 |
---|---|
container_issue | s2 |
container_start_page | S50 |
container_title | Canadian journal of neurological sciences |
container_volume | 50 |
creator | Pushie, MJ Boseley, RE Sylvain, NJ Peeling, L Kelly, ME |
description | Background: What matter (WM) is particularly sensitive to ischemia and WM changes are observed following onset of ischemic stroke as well as during expansion of the stroke lesion. To better correlate neurobehavioural and functional assessments in our models we have developed imaging methods to aid in the differentiation and quantification of WM injury. Methods: We employ 3 mouse models of stroke: photothrombotic, temporary middle cerebral artery occlusion, and intracerebral hemorrhage. Naïve controls and surgical shams (for each model) are also characterized. We use Fourier transform infrared (FTIR) imaging and synchrotron-based X-ray fluorescence microscopy (XFM) to visualize metabolites and elemental markers, respectively. These post-mortem imaging techniques are combined with conventional histology to confirm neuroanatomic features and cell types. Results: The metabolic profile of WM in naïve, sham, and stroke models has been characterized in C57BL/6 mice. The metabolic markers we identify are highly specific and enable the automated differentiation of WM from other tissues. Our methods have been re-tooled to identify degeneration and injury of WM regions. Conclusions: The combination of FTIR imaging and XFM afford the means to readily differentiate WM changes following stroke onset. Significant dysregulation can be observed before the core or penumbra of the stroke lesion reaches WM-containing regions. |
doi_str_mv | 10.1017/cjn.2023.83 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887050675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_cjn_2023_83</cupid><sourcerecordid>2887050675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1393-ed8dcbcd579c6a2c653f4e854efd1cf71b56cf560e8ff2fa843609799a15f7923</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK6e_AMBj9Kaj-ajR138WFjwoueQpknbtW3WpMvivzdlF7wIAzOHZ94ZHgBuMcoxwuLBbMecIEJzSc_AgiAmMoQZOwcLRLHIMBf4ElzFuEWIcMaLBdg95RiuB910YwMHO-nK952BptVjYyPsRnhou8nCQU-TDdD5vveHme2iae2QUD3WME0-hDalGBin4L8s9GO007yv5-oG3cPB17a_BhdO99HenPoSfL48f6zess3763r1uMkMpiXNbC1rU5maidJwTQxn1BVWssK6GhsncMW4cYwjK50jTsuCclSKstSYOVESugR3x9xd8N97Gye19fswppOKSCkQQ1ywRN0fKRN8jME6tQvp1_CjMFKzUpWUqlmpkjTR2YnWQxW6urF_of_xv3lJeWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887050675</pqid></control><display><type>article</type><title>B.1 Imaging metabolic changes in white matter following ischemic and hemorrhagic stroke onset in an animal model</title><source>Cambridge Journals</source><creator>Pushie, MJ ; Boseley, RE ; Sylvain, NJ ; Peeling, L ; Kelly, ME</creator><creatorcontrib>Pushie, MJ ; Boseley, RE ; Sylvain, NJ ; Peeling, L ; Kelly, ME</creatorcontrib><description>Background: What matter (WM) is particularly sensitive to ischemia and WM changes are observed following onset of ischemic stroke as well as during expansion of the stroke lesion. To better correlate neurobehavioural and functional assessments in our models we have developed imaging methods to aid in the differentiation and quantification of WM injury. Methods: We employ 3 mouse models of stroke: photothrombotic, temporary middle cerebral artery occlusion, and intracerebral hemorrhage. Naïve controls and surgical shams (for each model) are also characterized. We use Fourier transform infrared (FTIR) imaging and synchrotron-based X-ray fluorescence microscopy (XFM) to visualize metabolites and elemental markers, respectively. These post-mortem imaging techniques are combined with conventional histology to confirm neuroanatomic features and cell types. Results: The metabolic profile of WM in naïve, sham, and stroke models has been characterized in C57BL/6 mice. The metabolic markers we identify are highly specific and enable the automated differentiation of WM from other tissues. Our methods have been re-tooled to identify degeneration and injury of WM regions. Conclusions: The combination of FTIR imaging and XFM afford the means to readily differentiate WM changes following stroke onset. Significant dysregulation can be observed before the core or penumbra of the stroke lesion reaches WM-containing regions.</description><identifier>ISSN: 0317-1671</identifier><identifier>EISSN: 2057-0155</identifier><identifier>DOI: 10.1017/cjn.2023.83</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Abstracts ; Canadian Stroke Consortium (CSC) ; Fourier transforms ; Ischemia ; Metabolism ; Metabolites ; Platform Presentations</subject><ispartof>Canadian journal of neurological sciences, 2023-06, Vol.50 (s2), p.S50-S50</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0317167123000835/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Pushie, MJ</creatorcontrib><creatorcontrib>Boseley, RE</creatorcontrib><creatorcontrib>Sylvain, NJ</creatorcontrib><creatorcontrib>Peeling, L</creatorcontrib><creatorcontrib>Kelly, ME</creatorcontrib><title>B.1 Imaging metabolic changes in white matter following ischemic and hemorrhagic stroke onset in an animal model</title><title>Canadian journal of neurological sciences</title><addtitle>Can. J. Neurol. Sci</addtitle><description>Background: What matter (WM) is particularly sensitive to ischemia and WM changes are observed following onset of ischemic stroke as well as during expansion of the stroke lesion. To better correlate neurobehavioural and functional assessments in our models we have developed imaging methods to aid in the differentiation and quantification of WM injury. Methods: We employ 3 mouse models of stroke: photothrombotic, temporary middle cerebral artery occlusion, and intracerebral hemorrhage. Naïve controls and surgical shams (for each model) are also characterized. We use Fourier transform infrared (FTIR) imaging and synchrotron-based X-ray fluorescence microscopy (XFM) to visualize metabolites and elemental markers, respectively. These post-mortem imaging techniques are combined with conventional histology to confirm neuroanatomic features and cell types. Results: The metabolic profile of WM in naïve, sham, and stroke models has been characterized in C57BL/6 mice. The metabolic markers we identify are highly specific and enable the automated differentiation of WM from other tissues. Our methods have been re-tooled to identify degeneration and injury of WM regions. Conclusions: The combination of FTIR imaging and XFM afford the means to readily differentiate WM changes following stroke onset. Significant dysregulation can be observed before the core or penumbra of the stroke lesion reaches WM-containing regions.</description><subject>Abstracts</subject><subject>Canadian Stroke Consortium (CSC)</subject><subject>Fourier transforms</subject><subject>Ischemia</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Platform Presentations</subject><issn>0317-1671</issn><issn>2057-0155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LxDAQhoMouK6e_AMBj9Kaj-ajR138WFjwoueQpknbtW3WpMvivzdlF7wIAzOHZ94ZHgBuMcoxwuLBbMecIEJzSc_AgiAmMoQZOwcLRLHIMBf4ElzFuEWIcMaLBdg95RiuB910YwMHO-nK952BptVjYyPsRnhou8nCQU-TDdD5vveHme2iae2QUD3WME0-hDalGBin4L8s9GO007yv5-oG3cPB17a_BhdO99HenPoSfL48f6zess3763r1uMkMpiXNbC1rU5maidJwTQxn1BVWssK6GhsncMW4cYwjK50jTsuCclSKstSYOVESugR3x9xd8N97Gye19fswppOKSCkQQ1ywRN0fKRN8jME6tQvp1_CjMFKzUpWUqlmpkjTR2YnWQxW6urF_of_xv3lJeWw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Pushie, MJ</creator><creator>Boseley, RE</creator><creator>Sylvain, NJ</creator><creator>Peeling, L</creator><creator>Kelly, ME</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>202306</creationdate><title>B.1 Imaging metabolic changes in white matter following ischemic and hemorrhagic stroke onset in an animal model</title><author>Pushie, MJ ; Boseley, RE ; Sylvain, NJ ; Peeling, L ; Kelly, ME</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1393-ed8dcbcd579c6a2c653f4e854efd1cf71b56cf560e8ff2fa843609799a15f7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstracts</topic><topic>Canadian Stroke Consortium (CSC)</topic><topic>Fourier transforms</topic><topic>Ischemia</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Platform Presentations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pushie, MJ</creatorcontrib><creatorcontrib>Boseley, RE</creatorcontrib><creatorcontrib>Sylvain, NJ</creatorcontrib><creatorcontrib>Peeling, L</creatorcontrib><creatorcontrib>Kelly, ME</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian journal of neurological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pushie, MJ</au><au>Boseley, RE</au><au>Sylvain, NJ</au><au>Peeling, L</au><au>Kelly, ME</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B.1 Imaging metabolic changes in white matter following ischemic and hemorrhagic stroke onset in an animal model</atitle><jtitle>Canadian journal of neurological sciences</jtitle><addtitle>Can. J. Neurol. Sci</addtitle><date>2023-06</date><risdate>2023</risdate><volume>50</volume><issue>s2</issue><spage>S50</spage><epage>S50</epage><pages>S50-S50</pages><issn>0317-1671</issn><eissn>2057-0155</eissn><abstract>Background: What matter (WM) is particularly sensitive to ischemia and WM changes are observed following onset of ischemic stroke as well as during expansion of the stroke lesion. To better correlate neurobehavioural and functional assessments in our models we have developed imaging methods to aid in the differentiation and quantification of WM injury. Methods: We employ 3 mouse models of stroke: photothrombotic, temporary middle cerebral artery occlusion, and intracerebral hemorrhage. Naïve controls and surgical shams (for each model) are also characterized. We use Fourier transform infrared (FTIR) imaging and synchrotron-based X-ray fluorescence microscopy (XFM) to visualize metabolites and elemental markers, respectively. These post-mortem imaging techniques are combined with conventional histology to confirm neuroanatomic features and cell types. Results: The metabolic profile of WM in naïve, sham, and stroke models has been characterized in C57BL/6 mice. The metabolic markers we identify are highly specific and enable the automated differentiation of WM from other tissues. Our methods have been re-tooled to identify degeneration and injury of WM regions. Conclusions: The combination of FTIR imaging and XFM afford the means to readily differentiate WM changes following stroke onset. Significant dysregulation can be observed before the core or penumbra of the stroke lesion reaches WM-containing regions.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/cjn.2023.83</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0317-1671 |
ispartof | Canadian journal of neurological sciences, 2023-06, Vol.50 (s2), p.S50-S50 |
issn | 0317-1671 2057-0155 |
language | eng |
recordid | cdi_proquest_journals_2887050675 |
source | Cambridge Journals |
subjects | Abstracts Canadian Stroke Consortium (CSC) Fourier transforms Ischemia Metabolism Metabolites Platform Presentations |
title | B.1 Imaging metabolic changes in white matter following ischemic and hemorrhagic stroke onset in an animal model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B.1%20Imaging%20metabolic%20changes%20in%20white%20matter%20following%20ischemic%20and%20hemorrhagic%20stroke%20onset%20in%20an%20animal%20model&rft.jtitle=Canadian%20journal%20of%20neurological%20sciences&rft.au=Pushie,%20MJ&rft.date=2023-06&rft.volume=50&rft.issue=s2&rft.spage=S50&rft.epage=S50&rft.pages=S50-S50&rft.issn=0317-1671&rft.eissn=2057-0155&rft_id=info:doi/10.1017/cjn.2023.83&rft_dat=%3Cproquest_cross%3E2887050675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887050675&rft_id=info:pmid/&rft_cupid=10_1017_cjn_2023_83&rfr_iscdi=true |