Dyadic Maximal Operators on Martingale Musielak–Orlicz Hardy Type Spaces and Applications
Let φ : [ 0 , 1 ) × [ 0 , ∞ ) → [ 0 , ∞ ) be a Musielak–Orlicz function and q ∈ ( 0 , ∞ ] . In this article, the authors characterize the martingale Musielak–Orlicz Hardy space H φ [ 0 , 1 ) and the martingale Musielak–Orlicz–Lorentz Hardy space H φ , q [ 0 , 1 ) via dyadic maximal operators. As app...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2023-12, Vol.95 (4), Article 26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
φ
:
[
0
,
1
)
×
[
0
,
∞
)
→
[
0
,
∞
)
be a Musielak–Orlicz function and
q
∈
(
0
,
∞
]
. In this article, the authors characterize the martingale Musielak–Orlicz Hardy space
H
φ
[
0
,
1
)
and the martingale Musielak–Orlicz–Lorentz Hardy space
H
φ
,
q
[
0
,
1
)
via dyadic maximal operators. As applications, the authors prove that the maximal Fejér operator is bounded from the space
H
φ
[
0
,
1
)
to the Musielak–Orlicz space
L
φ
[
0
,
1
)
and from
H
φ
,
q
[
0
,
1
)
to the Musielak–Orlicz–Lorentz space
L
φ
,
q
[
0
,
1
)
, which further implies some convergence results of the Fejér means. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-023-02747-2 |