Dyadic Maximal Operators on Martingale Musielak–Orlicz Hardy Type Spaces and Applications

Let φ : [ 0 , 1 ) × [ 0 , ∞ ) → [ 0 , ∞ ) be a Musielak–Orlicz function and q ∈ ( 0 , ∞ ] . In this article, the authors characterize the martingale Musielak–Orlicz Hardy space H φ [ 0 , 1 ) and the martingale Musielak–Orlicz–Lorentz Hardy space H φ , q [ 0 , 1 ) via dyadic maximal operators. As app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2023-12, Vol.95 (4), Article 26
Hauptverfasser: Ferenc, Weisz, Xie, Guangheng, Yang, Dachun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let φ : [ 0 , 1 ) × [ 0 , ∞ ) → [ 0 , ∞ ) be a Musielak–Orlicz function and q ∈ ( 0 , ∞ ] . In this article, the authors characterize the martingale Musielak–Orlicz Hardy space H φ [ 0 , 1 ) and the martingale Musielak–Orlicz–Lorentz Hardy space H φ , q [ 0 , 1 ) via dyadic maximal operators. As applications, the authors prove that the maximal Fejér operator is bounded from the space H φ [ 0 , 1 ) to the Musielak–Orlicz space L φ [ 0 , 1 ) and from H φ , q [ 0 , 1 ) to the Musielak–Orlicz–Lorentz space L φ , q [ 0 , 1 ) , which further implies some convergence results of the Fejér means.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-023-02747-2