Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet

How fault geometry controls the rupture propagation and segmentation of a strike-slip event is an open question. Deciphering the relationship between the geometric fault complexity and seismic kinematics is essential for both understanding the seismic hazard posed by a particular fault and gaining i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2023-11, Vol.16 (11), p.1054-1060
Hauptverfasser: Zhang, Yijun, Tang, Xiongwei, Liu, Dechuan, Taymaz, Tuncay, Eken, Tuna, Guo, Rumeng, Zheng, Yong, Wang, Jingqi, Sun, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1060
container_issue 11
container_start_page 1054
container_title Nature geoscience
container_volume 16
creator Zhang, Yijun
Tang, Xiongwei
Liu, Dechuan
Taymaz, Tuncay
Eken, Tuna
Guo, Rumeng
Zheng, Yong
Wang, Jingqi
Sun, Heping
description How fault geometry controls the rupture propagation and segmentation of a strike-slip event is an open question. Deciphering the relationship between the geometric fault complexity and seismic kinematics is essential for both understanding the seismic hazard posed by a particular fault and gaining insights into the fundamental mechanics of earthquake rupture. Here we integrate the finite-fault inversion of synthetic aperture radar observations and back projection of high-frequency teleseismic array waveforms to investigate the rupture geometry of the 2023 M w 7.8 and M w 7.6 Kahramanmaraş (southeastern Turkey) earthquake doublet and its impact on the kinematics and slip distribution. We find that large slip asperities are separated by fault bends, whereas intense high-frequency (~1 Hz) sources occur near the branching junctions, suggesting that geometric barriers could decelerate rupture propagation and enhance high-frequency wave radiations. In addition, supershear rupture propagating along the relatively high-velocity material is prone to occur on geometrically simple and smooth faults with relatively few aftershocks. These kinematic characteristics highlight that the geometric complexity of the fault system may be a key factor in the irregular cascading rupture process. Analysis of remote-sensing and seismological observations from the 2023 Kahramanmaraş earthquake doublet reveals how fault geometry can control fault slip distribution and rupture kinematics, including the occurrence of supershear rupture.
doi_str_mv 10.1038/s41561-023-01283-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886757187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886757187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-e6bb786f14383e626fde7e26ee0cb2f4710934b886581ff49ba63a7ec3e4aaab3</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1Av-W9tboggCIhINqa3ZzWx-SNaJ7S04DafhXhgWREc1U7zvvZlHyCVn15xJexMVLzUvmJAF48LKQh6RETelKFjF7PHvbit1Ss5i3DCmmTLliMyn6HeYwrqhje9S8NtIfUcbiA0s1t2Shn6f-oDUtzStkIocQZ9gFWAH3Q4CfLxThJBWhx5ekS58X28xnZOTFrYRL37mmMzv714mD8Xsefo4uZ0VIJVIBeq6Nla3XEkrUQvdLtCg0IisqUWrDGeVVLW1urS8bVVVg5ZgsJGoAKCWY3I1-O6DP_QYk9v4PnQ50olMmdJwa7JKDKom-BgDtm4f1vn2N8eZ-6rPDfW5_Jv7rs_JDMkBilncLTH8Wf9DfQJOKnOh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886757187</pqid></control><display><type>article</type><title>Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Yijun ; Tang, Xiongwei ; Liu, Dechuan ; Taymaz, Tuncay ; Eken, Tuna ; Guo, Rumeng ; Zheng, Yong ; Wang, Jingqi ; Sun, Heping</creator><creatorcontrib>Zhang, Yijun ; Tang, Xiongwei ; Liu, Dechuan ; Taymaz, Tuncay ; Eken, Tuna ; Guo, Rumeng ; Zheng, Yong ; Wang, Jingqi ; Sun, Heping</creatorcontrib><description>How fault geometry controls the rupture propagation and segmentation of a strike-slip event is an open question. Deciphering the relationship between the geometric fault complexity and seismic kinematics is essential for both understanding the seismic hazard posed by a particular fault and gaining insights into the fundamental mechanics of earthquake rupture. Here we integrate the finite-fault inversion of synthetic aperture radar observations and back projection of high-frequency teleseismic array waveforms to investigate the rupture geometry of the 2023 M w 7.8 and M w 7.6 Kahramanmaraş (southeastern Turkey) earthquake doublet and its impact on the kinematics and slip distribution. We find that large slip asperities are separated by fault bends, whereas intense high-frequency (~1 Hz) sources occur near the branching junctions, suggesting that geometric barriers could decelerate rupture propagation and enhance high-frequency wave radiations. In addition, supershear rupture propagating along the relatively high-velocity material is prone to occur on geometrically simple and smooth faults with relatively few aftershocks. These kinematic characteristics highlight that the geometric complexity of the fault system may be a key factor in the irregular cascading rupture process. Analysis of remote-sensing and seismological observations from the 2023 Kahramanmaraş earthquake doublet reveals how fault geometry can control fault slip distribution and rupture kinematics, including the occurrence of supershear rupture.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-023-01283-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/508 ; 704/4111 ; Aftershocks ; Displaced persons ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Earth System Sciences ; Earthquakes ; Fault lines ; Geochemistry ; Geology ; Geometry ; Geophysics/Geodesy ; Kinematics ; Propagation ; Seismic activity</subject><ispartof>Nature geoscience, 2023-11, Vol.16 (11), p.1054-1060</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-e6bb786f14383e626fde7e26ee0cb2f4710934b886581ff49ba63a7ec3e4aaab3</citedby><cites>FETCH-LOGICAL-a342t-e6bb786f14383e626fde7e26ee0cb2f4710934b886581ff49ba63a7ec3e4aaab3</cites><orcidid>0000-0003-0605-3720 ; 0000-0001-7980-9715 ; 0000-0002-7324-5936 ; 0000-0001-6157-8584 ; 0000-0001-6807-9622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-023-01283-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-023-01283-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Tang, Xiongwei</creatorcontrib><creatorcontrib>Liu, Dechuan</creatorcontrib><creatorcontrib>Taymaz, Tuncay</creatorcontrib><creatorcontrib>Eken, Tuna</creatorcontrib><creatorcontrib>Guo, Rumeng</creatorcontrib><creatorcontrib>Zheng, Yong</creatorcontrib><creatorcontrib>Wang, Jingqi</creatorcontrib><creatorcontrib>Sun, Heping</creatorcontrib><title>Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>How fault geometry controls the rupture propagation and segmentation of a strike-slip event is an open question. Deciphering the relationship between the geometric fault complexity and seismic kinematics is essential for both understanding the seismic hazard posed by a particular fault and gaining insights into the fundamental mechanics of earthquake rupture. Here we integrate the finite-fault inversion of synthetic aperture radar observations and back projection of high-frequency teleseismic array waveforms to investigate the rupture geometry of the 2023 M w 7.8 and M w 7.6 Kahramanmaraş (southeastern Turkey) earthquake doublet and its impact on the kinematics and slip distribution. We find that large slip asperities are separated by fault bends, whereas intense high-frequency (~1 Hz) sources occur near the branching junctions, suggesting that geometric barriers could decelerate rupture propagation and enhance high-frequency wave radiations. In addition, supershear rupture propagating along the relatively high-velocity material is prone to occur on geometrically simple and smooth faults with relatively few aftershocks. These kinematic characteristics highlight that the geometric complexity of the fault system may be a key factor in the irregular cascading rupture process. Analysis of remote-sensing and seismological observations from the 2023 Kahramanmaraş earthquake doublet reveals how fault geometry can control fault slip distribution and rupture kinematics, including the occurrence of supershear rupture.</description><subject>704/2151/508</subject><subject>704/4111</subject><subject>Aftershocks</subject><subject>Displaced persons</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Earthquakes</subject><subject>Fault lines</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geometry</subject><subject>Geophysics/Geodesy</subject><subject>Kinematics</subject><subject>Propagation</subject><subject>Seismic activity</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1OAzEQhS0EEiFwASpL1Av-W9tboggCIhINqa3ZzWx-SNaJ7S04DafhXhgWREc1U7zvvZlHyCVn15xJexMVLzUvmJAF48LKQh6RETelKFjF7PHvbit1Ss5i3DCmmTLliMyn6HeYwrqhje9S8NtIfUcbiA0s1t2Shn6f-oDUtzStkIocQZ9gFWAH3Q4CfLxThJBWhx5ekS58X28xnZOTFrYRL37mmMzv714mD8Xsefo4uZ0VIJVIBeq6Nla3XEkrUQvdLtCg0IisqUWrDGeVVLW1urS8bVVVg5ZgsJGoAKCWY3I1-O6DP_QYk9v4PnQ50olMmdJwa7JKDKom-BgDtm4f1vn2N8eZ-6rPDfW5_Jv7rs_JDMkBilncLTH8Wf9DfQJOKnOh</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Yijun</creator><creator>Tang, Xiongwei</creator><creator>Liu, Dechuan</creator><creator>Taymaz, Tuncay</creator><creator>Eken, Tuna</creator><creator>Guo, Rumeng</creator><creator>Zheng, Yong</creator><creator>Wang, Jingqi</creator><creator>Sun, Heping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0605-3720</orcidid><orcidid>https://orcid.org/0000-0001-7980-9715</orcidid><orcidid>https://orcid.org/0000-0002-7324-5936</orcidid><orcidid>https://orcid.org/0000-0001-6157-8584</orcidid><orcidid>https://orcid.org/0000-0001-6807-9622</orcidid></search><sort><creationdate>20231101</creationdate><title>Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet</title><author>Zhang, Yijun ; Tang, Xiongwei ; Liu, Dechuan ; Taymaz, Tuncay ; Eken, Tuna ; Guo, Rumeng ; Zheng, Yong ; Wang, Jingqi ; Sun, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-e6bb786f14383e626fde7e26ee0cb2f4710934b886581ff49ba63a7ec3e4aaab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/2151/508</topic><topic>704/4111</topic><topic>Aftershocks</topic><topic>Displaced persons</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Earthquakes</topic><topic>Fault lines</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geometry</topic><topic>Geophysics/Geodesy</topic><topic>Kinematics</topic><topic>Propagation</topic><topic>Seismic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Tang, Xiongwei</creatorcontrib><creatorcontrib>Liu, Dechuan</creatorcontrib><creatorcontrib>Taymaz, Tuncay</creatorcontrib><creatorcontrib>Eken, Tuna</creatorcontrib><creatorcontrib>Guo, Rumeng</creatorcontrib><creatorcontrib>Zheng, Yong</creatorcontrib><creatorcontrib>Wang, Jingqi</creatorcontrib><creatorcontrib>Sun, Heping</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yijun</au><au>Tang, Xiongwei</au><au>Liu, Dechuan</au><au>Taymaz, Tuncay</au><au>Eken, Tuna</au><au>Guo, Rumeng</au><au>Zheng, Yong</au><au>Wang, Jingqi</au><au>Sun, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>11</issue><spage>1054</spage><epage>1060</epage><pages>1054-1060</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>How fault geometry controls the rupture propagation and segmentation of a strike-slip event is an open question. Deciphering the relationship between the geometric fault complexity and seismic kinematics is essential for both understanding the seismic hazard posed by a particular fault and gaining insights into the fundamental mechanics of earthquake rupture. Here we integrate the finite-fault inversion of synthetic aperture radar observations and back projection of high-frequency teleseismic array waveforms to investigate the rupture geometry of the 2023 M w 7.8 and M w 7.6 Kahramanmaraş (southeastern Turkey) earthquake doublet and its impact on the kinematics and slip distribution. We find that large slip asperities are separated by fault bends, whereas intense high-frequency (~1 Hz) sources occur near the branching junctions, suggesting that geometric barriers could decelerate rupture propagation and enhance high-frequency wave radiations. In addition, supershear rupture propagating along the relatively high-velocity material is prone to occur on geometrically simple and smooth faults with relatively few aftershocks. These kinematic characteristics highlight that the geometric complexity of the fault system may be a key factor in the irregular cascading rupture process. Analysis of remote-sensing and seismological observations from the 2023 Kahramanmaraş earthquake doublet reveals how fault geometry can control fault slip distribution and rupture kinematics, including the occurrence of supershear rupture.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-023-01283-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0605-3720</orcidid><orcidid>https://orcid.org/0000-0001-7980-9715</orcidid><orcidid>https://orcid.org/0000-0002-7324-5936</orcidid><orcidid>https://orcid.org/0000-0001-6157-8584</orcidid><orcidid>https://orcid.org/0000-0001-6807-9622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2023-11, Vol.16 (11), p.1054-1060
issn 1752-0894
1752-0908
language eng
recordid cdi_proquest_journals_2886757187
source Springer Nature - Complete Springer Journals
subjects 704/2151/508
704/4111
Aftershocks
Displaced persons
Earth and Environmental Science
Earth science
Earth Sciences
Earth System Sciences
Earthquakes
Fault lines
Geochemistry
Geology
Geometry
Geophysics/Geodesy
Kinematics
Propagation
Seismic activity
title Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20controls%20on%20cascading%20rupture%20of%20the%202023%20Kahramanmara%C5%9F%20earthquake%20doublet&rft.jtitle=Nature%20geoscience&rft.au=Zhang,%20Yijun&rft.date=2023-11-01&rft.volume=16&rft.issue=11&rft.spage=1054&rft.epage=1060&rft.pages=1054-1060&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-023-01283-3&rft_dat=%3Cproquest_cross%3E2886757187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886757187&rft_id=info:pmid/&rfr_iscdi=true