Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica
Geology and bed topography influence how ice sheets respond to climate change. Despite the West Antarctic Ice Sheet’s capacity to retreat and advance quickly over its over-deepened interior, little is known about the subglacial landscape of the East Antarctic elevated interior that probably seeded W...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2023-11, Vol.16 (11), p.1005-1013 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1013 |
---|---|
container_issue | 11 |
container_start_page | 1005 |
container_title | Nature geoscience |
container_volume | 16 |
creator | Hoffman, Andrew O. Holschuh, Nicholas Mueller, Megan Paden, John Muto, Atsuhiro Ariho, Gordon Brigham, Cassandra Christian, John Erich Davidge, Lindsey Heitmann, Emma Hills, Benjamin Horlings, Annika Morey, Susannah O’Connor, Gemma Fudge, T. J. Steig, Eric J. Christianson, Knut |
description | Geology and bed topography influence how ice sheets respond to climate change. Despite the West Antarctic Ice Sheet’s capacity to retreat and advance quickly over its over-deepened interior, little is known about the subglacial landscape of the East Antarctic elevated interior that probably seeded West Antarctic ice streams and glaciers. At Hercules Dome, we use three-dimensional swath radar technology to image the upstream origin of large subglacial basins that drain ice from the Antarctic interior into West Antarctic ice streams. Radar imaging reveals an ancient, alpine landscape with hanging tributary valleys and large U-shaped valleys. On the valley floors, we image subglacial landforms that are typically associated with temperate basal conditions and fast ice flow. Formation mechanisms for these subglacial landforms are fundamentally inconsistent with the currently slowly flowing ice. Regional aerogravity shows that these valleys feed into larger subglacial basins that host thick sediment columns. Past tectonism probably created these basins and promoted ice flow from Hercules Dome into the Ross and Filchner–Ronne sectors. This suggests that the landscape at Hercules Dome was shaped by fast-flowing ice in the past when the area may have served as or been proximal to a nucleation centre for the West Antarctic Ice Sheet.
Alpine valleys and lineated bedforms imaged with swath radar suggest that ice flowed quickly into a fault-bounded basin during the initial nucleation of the West Antarctic Ice Sheet near Hercules Dome. |
doi_str_mv | 10.1038/s41561-023-01265-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886754613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886754613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-d13038cfc99f79f565900c578d7151f883cce854d828f9e941adce6f5f6e07ad3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_wFXAdTSZTF7LUh8VCi5Uugwhc6NT2klNMgv_vdFR3Lm6F-53zj0chC4YvWKU6-vcMiEZoQ0nlDVSEHGAZkyJhlBD9eHvrk17jE5y3lAqaavEDK2fvEsZx4AL-BKHPu_wPsVdLIB7DyS_ARQ8jH4LrvRxwKEe8RKSH7eQ8U3cVW4oEa8hFzwfiku-9N6doaPgthnOf-Yperm7fV4syerx_mExXxHHuSqkY7zG98EbE5QJQgpDqRdKd4oJFrTm3oMWbacbHQyYlrnOgwwiSKDKdfwUXU6-NfT7WDPYTRzTUF_aRmupRCsZr1QzUT7FnBMEu0_9zqUPy6j9KtBOBdpaoP0u0Ioq4pMoV3h4hfRn_Y_qE9x1c7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886754613</pqid></control><display><type>article</type><title>Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica</title><source>SpringerLink</source><creator>Hoffman, Andrew O. ; Holschuh, Nicholas ; Mueller, Megan ; Paden, John ; Muto, Atsuhiro ; Ariho, Gordon ; Brigham, Cassandra ; Christian, John Erich ; Davidge, Lindsey ; Heitmann, Emma ; Hills, Benjamin ; Horlings, Annika ; Morey, Susannah ; O’Connor, Gemma ; Fudge, T. J. ; Steig, Eric J. ; Christianson, Knut</creator><creatorcontrib>Hoffman, Andrew O. ; Holschuh, Nicholas ; Mueller, Megan ; Paden, John ; Muto, Atsuhiro ; Ariho, Gordon ; Brigham, Cassandra ; Christian, John Erich ; Davidge, Lindsey ; Heitmann, Emma ; Hills, Benjamin ; Horlings, Annika ; Morey, Susannah ; O’Connor, Gemma ; Fudge, T. J. ; Steig, Eric J. ; Christianson, Knut</creatorcontrib><description>Geology and bed topography influence how ice sheets respond to climate change. Despite the West Antarctic Ice Sheet’s capacity to retreat and advance quickly over its over-deepened interior, little is known about the subglacial landscape of the East Antarctic elevated interior that probably seeded West Antarctic ice streams and glaciers. At Hercules Dome, we use three-dimensional swath radar technology to image the upstream origin of large subglacial basins that drain ice from the Antarctic interior into West Antarctic ice streams. Radar imaging reveals an ancient, alpine landscape with hanging tributary valleys and large U-shaped valleys. On the valley floors, we image subglacial landforms that are typically associated with temperate basal conditions and fast ice flow. Formation mechanisms for these subglacial landforms are fundamentally inconsistent with the currently slowly flowing ice. Regional aerogravity shows that these valleys feed into larger subglacial basins that host thick sediment columns. Past tectonism probably created these basins and promoted ice flow from Hercules Dome into the Ross and Filchner–Ronne sectors. This suggests that the landscape at Hercules Dome was shaped by fast-flowing ice in the past when the area may have served as or been proximal to a nucleation centre for the West Antarctic Ice Sheet.
Alpine valleys and lineated bedforms imaged with swath radar suggest that ice flowed quickly into a fault-bounded basin during the initial nucleation of the West Antarctic Ice Sheet near Hercules Dome.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-023-01265-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/125 ; 704/106/413 ; Basins ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Earth System Sciences ; Geochemistry ; Geology ; Geophysics/Geodesy ; Ice sheets ; Nucleation ; Radar ; Topography ; Valleys</subject><ispartof>Nature geoscience, 2023-11, Vol.16 (11), p.1005-1013</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a337t-d13038cfc99f79f565900c578d7151f883cce854d828f9e941adce6f5f6e07ad3</cites><orcidid>0000-0002-8191-5549 ; 0000-0003-2312-3727 ; 0000-0003-1703-5085 ; 0000-0003-0775-6284 ; 0000-0002-4645-4038 ; 0000-0002-5116-3032 ; 0000-0003-1236-5704 ; 0000-0003-4490-7416 ; 0000-0002-6818-7479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-023-01265-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-023-01265-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hoffman, Andrew O.</creatorcontrib><creatorcontrib>Holschuh, Nicholas</creatorcontrib><creatorcontrib>Mueller, Megan</creatorcontrib><creatorcontrib>Paden, John</creatorcontrib><creatorcontrib>Muto, Atsuhiro</creatorcontrib><creatorcontrib>Ariho, Gordon</creatorcontrib><creatorcontrib>Brigham, Cassandra</creatorcontrib><creatorcontrib>Christian, John Erich</creatorcontrib><creatorcontrib>Davidge, Lindsey</creatorcontrib><creatorcontrib>Heitmann, Emma</creatorcontrib><creatorcontrib>Hills, Benjamin</creatorcontrib><creatorcontrib>Horlings, Annika</creatorcontrib><creatorcontrib>Morey, Susannah</creatorcontrib><creatorcontrib>O’Connor, Gemma</creatorcontrib><creatorcontrib>Fudge, T. J.</creatorcontrib><creatorcontrib>Steig, Eric J.</creatorcontrib><creatorcontrib>Christianson, Knut</creatorcontrib><title>Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Geology and bed topography influence how ice sheets respond to climate change. Despite the West Antarctic Ice Sheet’s capacity to retreat and advance quickly over its over-deepened interior, little is known about the subglacial landscape of the East Antarctic elevated interior that probably seeded West Antarctic ice streams and glaciers. At Hercules Dome, we use three-dimensional swath radar technology to image the upstream origin of large subglacial basins that drain ice from the Antarctic interior into West Antarctic ice streams. Radar imaging reveals an ancient, alpine landscape with hanging tributary valleys and large U-shaped valleys. On the valley floors, we image subglacial landforms that are typically associated with temperate basal conditions and fast ice flow. Formation mechanisms for these subglacial landforms are fundamentally inconsistent with the currently slowly flowing ice. Regional aerogravity shows that these valleys feed into larger subglacial basins that host thick sediment columns. Past tectonism probably created these basins and promoted ice flow from Hercules Dome into the Ross and Filchner–Ronne sectors. This suggests that the landscape at Hercules Dome was shaped by fast-flowing ice in the past when the area may have served as or been proximal to a nucleation centre for the West Antarctic Ice Sheet.
Alpine valleys and lineated bedforms imaged with swath radar suggest that ice flowed quickly into a fault-bounded basin during the initial nucleation of the West Antarctic Ice Sheet near Hercules Dome.</description><subject>704/106/125</subject><subject>704/106/413</subject><subject>Basins</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Ice sheets</subject><subject>Nucleation</subject><subject>Radar</subject><subject>Topography</subject><subject>Valleys</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_wFXAdTSZTF7LUh8VCi5Uugwhc6NT2klNMgv_vdFR3Lm6F-53zj0chC4YvWKU6-vcMiEZoQ0nlDVSEHGAZkyJhlBD9eHvrk17jE5y3lAqaavEDK2fvEsZx4AL-BKHPu_wPsVdLIB7DyS_ARQ8jH4LrvRxwKEe8RKSH7eQ8U3cVW4oEa8hFzwfiku-9N6doaPgthnOf-Yperm7fV4syerx_mExXxHHuSqkY7zG98EbE5QJQgpDqRdKd4oJFrTm3oMWbacbHQyYlrnOgwwiSKDKdfwUXU6-NfT7WDPYTRzTUF_aRmupRCsZr1QzUT7FnBMEu0_9zqUPy6j9KtBOBdpaoP0u0Ioq4pMoV3h4hfRn_Y_qE9x1c7c</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Hoffman, Andrew O.</creator><creator>Holschuh, Nicholas</creator><creator>Mueller, Megan</creator><creator>Paden, John</creator><creator>Muto, Atsuhiro</creator><creator>Ariho, Gordon</creator><creator>Brigham, Cassandra</creator><creator>Christian, John Erich</creator><creator>Davidge, Lindsey</creator><creator>Heitmann, Emma</creator><creator>Hills, Benjamin</creator><creator>Horlings, Annika</creator><creator>Morey, Susannah</creator><creator>O’Connor, Gemma</creator><creator>Fudge, T. J.</creator><creator>Steig, Eric J.</creator><creator>Christianson, Knut</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8191-5549</orcidid><orcidid>https://orcid.org/0000-0003-2312-3727</orcidid><orcidid>https://orcid.org/0000-0003-1703-5085</orcidid><orcidid>https://orcid.org/0000-0003-0775-6284</orcidid><orcidid>https://orcid.org/0000-0002-4645-4038</orcidid><orcidid>https://orcid.org/0000-0002-5116-3032</orcidid><orcidid>https://orcid.org/0000-0003-1236-5704</orcidid><orcidid>https://orcid.org/0000-0003-4490-7416</orcidid><orcidid>https://orcid.org/0000-0002-6818-7479</orcidid></search><sort><creationdate>20231101</creationdate><title>Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica</title><author>Hoffman, Andrew O. ; Holschuh, Nicholas ; Mueller, Megan ; Paden, John ; Muto, Atsuhiro ; Ariho, Gordon ; Brigham, Cassandra ; Christian, John Erich ; Davidge, Lindsey ; Heitmann, Emma ; Hills, Benjamin ; Horlings, Annika ; Morey, Susannah ; O’Connor, Gemma ; Fudge, T. J. ; Steig, Eric J. ; Christianson, Knut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-d13038cfc99f79f565900c578d7151f883cce854d828f9e941adce6f5f6e07ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>704/106/125</topic><topic>704/106/413</topic><topic>Basins</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Ice sheets</topic><topic>Nucleation</topic><topic>Radar</topic><topic>Topography</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, Andrew O.</creatorcontrib><creatorcontrib>Holschuh, Nicholas</creatorcontrib><creatorcontrib>Mueller, Megan</creatorcontrib><creatorcontrib>Paden, John</creatorcontrib><creatorcontrib>Muto, Atsuhiro</creatorcontrib><creatorcontrib>Ariho, Gordon</creatorcontrib><creatorcontrib>Brigham, Cassandra</creatorcontrib><creatorcontrib>Christian, John Erich</creatorcontrib><creatorcontrib>Davidge, Lindsey</creatorcontrib><creatorcontrib>Heitmann, Emma</creatorcontrib><creatorcontrib>Hills, Benjamin</creatorcontrib><creatorcontrib>Horlings, Annika</creatorcontrib><creatorcontrib>Morey, Susannah</creatorcontrib><creatorcontrib>O’Connor, Gemma</creatorcontrib><creatorcontrib>Fudge, T. J.</creatorcontrib><creatorcontrib>Steig, Eric J.</creatorcontrib><creatorcontrib>Christianson, Knut</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, Andrew O.</au><au>Holschuh, Nicholas</au><au>Mueller, Megan</au><au>Paden, John</au><au>Muto, Atsuhiro</au><au>Ariho, Gordon</au><au>Brigham, Cassandra</au><au>Christian, John Erich</au><au>Davidge, Lindsey</au><au>Heitmann, Emma</au><au>Hills, Benjamin</au><au>Horlings, Annika</au><au>Morey, Susannah</au><au>O’Connor, Gemma</au><au>Fudge, T. J.</au><au>Steig, Eric J.</au><au>Christianson, Knut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>16</volume><issue>11</issue><spage>1005</spage><epage>1013</epage><pages>1005-1013</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Geology and bed topography influence how ice sheets respond to climate change. Despite the West Antarctic Ice Sheet’s capacity to retreat and advance quickly over its over-deepened interior, little is known about the subglacial landscape of the East Antarctic elevated interior that probably seeded West Antarctic ice streams and glaciers. At Hercules Dome, we use three-dimensional swath radar technology to image the upstream origin of large subglacial basins that drain ice from the Antarctic interior into West Antarctic ice streams. Radar imaging reveals an ancient, alpine landscape with hanging tributary valleys and large U-shaped valleys. On the valley floors, we image subglacial landforms that are typically associated with temperate basal conditions and fast ice flow. Formation mechanisms for these subglacial landforms are fundamentally inconsistent with the currently slowly flowing ice. Regional aerogravity shows that these valleys feed into larger subglacial basins that host thick sediment columns. Past tectonism probably created these basins and promoted ice flow from Hercules Dome into the Ross and Filchner–Ronne sectors. This suggests that the landscape at Hercules Dome was shaped by fast-flowing ice in the past when the area may have served as or been proximal to a nucleation centre for the West Antarctic Ice Sheet.
Alpine valleys and lineated bedforms imaged with swath radar suggest that ice flowed quickly into a fault-bounded basin during the initial nucleation of the West Antarctic Ice Sheet near Hercules Dome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-023-01265-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8191-5549</orcidid><orcidid>https://orcid.org/0000-0003-2312-3727</orcidid><orcidid>https://orcid.org/0000-0003-1703-5085</orcidid><orcidid>https://orcid.org/0000-0003-0775-6284</orcidid><orcidid>https://orcid.org/0000-0002-4645-4038</orcidid><orcidid>https://orcid.org/0000-0002-5116-3032</orcidid><orcidid>https://orcid.org/0000-0003-1236-5704</orcidid><orcidid>https://orcid.org/0000-0003-4490-7416</orcidid><orcidid>https://orcid.org/0000-0002-6818-7479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2023-11, Vol.16 (11), p.1005-1013 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_2886754613 |
source | SpringerLink |
subjects | 704/106/125 704/106/413 Basins Earth and Environmental Science Earth science Earth Sciences Earth System Sciences Geochemistry Geology Geophysics/Geodesy Ice sheets Nucleation Radar Topography Valleys |
title | Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scars%20of%20tectonism%20promote%20ice-sheet%20nucleation%20from%20Hercules%20Dome%20into%20West%20Antarctica&rft.jtitle=Nature%20geoscience&rft.au=Hoffman,%20Andrew%20O.&rft.date=2023-11-01&rft.volume=16&rft.issue=11&rft.spage=1005&rft.epage=1013&rft.pages=1005-1013&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-023-01265-5&rft_dat=%3Cproquest_cross%3E2886754613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886754613&rft_id=info:pmid/&rfr_iscdi=true |