Masking Hyperspectral Imaging Data with Pretrained Models

The presence of undesired background areas associated with potential noise and unknown spectral characteristics degrades the performance of hyperspectral data processing. Masking out unwanted regions is key to addressing this issue. Processing only regions of interest yields notable improvements in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Arbash, Elias, Andréa de Lima Ribeiro, Thiele, Sam, Gnann, Nina, Rasti, Behnood, Fuchs, Margret, Ghamisi, Pedram, Gloaguen, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arbash, Elias
Andréa de Lima Ribeiro
Thiele, Sam
Gnann, Nina
Rasti, Behnood
Fuchs, Margret
Ghamisi, Pedram
Gloaguen, Richard
description The presence of undesired background areas associated with potential noise and unknown spectral characteristics degrades the performance of hyperspectral data processing. Masking out unwanted regions is key to addressing this issue. Processing only regions of interest yields notable improvements in terms of computational costs, required memory, and overall performance. The proposed processing pipeline encompasses two fundamental parts: regions of interest mask generation, followed by the application of hyperspectral data processing techniques solely on the newly masked hyperspectral cube. The novelty of our work lies in the methodology adopted for the preliminary image segmentation. We employ the Segment Anything Model (SAM) to extract all objects within the dataset, and subsequently refine the segments with a zero-shot Grounding Dino object detector, followed by intersection and exclusion filtering steps, without the need for fine-tuning or retraining. To illustrate the efficacy of the masking procedure, the proposed method is deployed on three challenging applications scenarios that demand accurate masking; shredded plastics characterization, drill core scanning, and litter monitoring. The numerical evaluation of the proposed masking method on the three applications is provided along with the used hyperparameters. The scripts for the method will be available at https://github.com/hifexplo/Masking.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886752899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886752899</sourcerecordid><originalsourceid>FETCH-proquest_journals_28867528993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9E0szs7MS1fwqCxILSouSE0uKUrMUfDMTUwHibokliQqlGeWZCgEFKUCZTLzUlMUfPNTUnOKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjCwszc1MjC0tKYOFUAhK42kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886752899</pqid></control><display><type>article</type><title>Masking Hyperspectral Imaging Data with Pretrained Models</title><source>Free E- Journals</source><creator>Arbash, Elias ; Andréa de Lima Ribeiro ; Thiele, Sam ; Gnann, Nina ; Rasti, Behnood ; Fuchs, Margret ; Ghamisi, Pedram ; Gloaguen, Richard</creator><creatorcontrib>Arbash, Elias ; Andréa de Lima Ribeiro ; Thiele, Sam ; Gnann, Nina ; Rasti, Behnood ; Fuchs, Margret ; Ghamisi, Pedram ; Gloaguen, Richard</creatorcontrib><description>The presence of undesired background areas associated with potential noise and unknown spectral characteristics degrades the performance of hyperspectral data processing. Masking out unwanted regions is key to addressing this issue. Processing only regions of interest yields notable improvements in terms of computational costs, required memory, and overall performance. The proposed processing pipeline encompasses two fundamental parts: regions of interest mask generation, followed by the application of hyperspectral data processing techniques solely on the newly masked hyperspectral cube. The novelty of our work lies in the methodology adopted for the preliminary image segmentation. We employ the Segment Anything Model (SAM) to extract all objects within the dataset, and subsequently refine the segments with a zero-shot Grounding Dino object detector, followed by intersection and exclusion filtering steps, without the need for fine-tuning or retraining. To illustrate the efficacy of the masking procedure, the proposed method is deployed on three challenging applications scenarios that demand accurate masking; shredded plastics characterization, drill core scanning, and litter monitoring. The numerical evaluation of the proposed masking method on the three applications is provided along with the used hyperparameters. The scripts for the method will be available at https://github.com/hifexplo/Masking.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Background noise ; Data processing ; Hyperspectral imaging ; Image segmentation ; Masking ; Object recognition ; Performance degradation</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Arbash, Elias</creatorcontrib><creatorcontrib>Andréa de Lima Ribeiro</creatorcontrib><creatorcontrib>Thiele, Sam</creatorcontrib><creatorcontrib>Gnann, Nina</creatorcontrib><creatorcontrib>Rasti, Behnood</creatorcontrib><creatorcontrib>Fuchs, Margret</creatorcontrib><creatorcontrib>Ghamisi, Pedram</creatorcontrib><creatorcontrib>Gloaguen, Richard</creatorcontrib><title>Masking Hyperspectral Imaging Data with Pretrained Models</title><title>arXiv.org</title><description>The presence of undesired background areas associated with potential noise and unknown spectral characteristics degrades the performance of hyperspectral data processing. Masking out unwanted regions is key to addressing this issue. Processing only regions of interest yields notable improvements in terms of computational costs, required memory, and overall performance. The proposed processing pipeline encompasses two fundamental parts: regions of interest mask generation, followed by the application of hyperspectral data processing techniques solely on the newly masked hyperspectral cube. The novelty of our work lies in the methodology adopted for the preliminary image segmentation. We employ the Segment Anything Model (SAM) to extract all objects within the dataset, and subsequently refine the segments with a zero-shot Grounding Dino object detector, followed by intersection and exclusion filtering steps, without the need for fine-tuning or retraining. To illustrate the efficacy of the masking procedure, the proposed method is deployed on three challenging applications scenarios that demand accurate masking; shredded plastics characterization, drill core scanning, and litter monitoring. The numerical evaluation of the proposed masking method on the three applications is provided along with the used hyperparameters. The scripts for the method will be available at https://github.com/hifexplo/Masking.</description><subject>Background noise</subject><subject>Data processing</subject><subject>Hyperspectral imaging</subject><subject>Image segmentation</subject><subject>Masking</subject><subject>Object recognition</subject><subject>Performance degradation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9E0szs7MS1fwqCxILSouSE0uKUrMUfDMTUwHibokliQqlGeWZCgEFKUCZTLzUlMUfPNTUnOKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjCwszc1MjC0tKYOFUAhK42kg</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Arbash, Elias</creator><creator>Andréa de Lima Ribeiro</creator><creator>Thiele, Sam</creator><creator>Gnann, Nina</creator><creator>Rasti, Behnood</creator><creator>Fuchs, Margret</creator><creator>Ghamisi, Pedram</creator><creator>Gloaguen, Richard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231106</creationdate><title>Masking Hyperspectral Imaging Data with Pretrained Models</title><author>Arbash, Elias ; Andréa de Lima Ribeiro ; Thiele, Sam ; Gnann, Nina ; Rasti, Behnood ; Fuchs, Margret ; Ghamisi, Pedram ; Gloaguen, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28867528993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Background noise</topic><topic>Data processing</topic><topic>Hyperspectral imaging</topic><topic>Image segmentation</topic><topic>Masking</topic><topic>Object recognition</topic><topic>Performance degradation</topic><toplevel>online_resources</toplevel><creatorcontrib>Arbash, Elias</creatorcontrib><creatorcontrib>Andréa de Lima Ribeiro</creatorcontrib><creatorcontrib>Thiele, Sam</creatorcontrib><creatorcontrib>Gnann, Nina</creatorcontrib><creatorcontrib>Rasti, Behnood</creatorcontrib><creatorcontrib>Fuchs, Margret</creatorcontrib><creatorcontrib>Ghamisi, Pedram</creatorcontrib><creatorcontrib>Gloaguen, Richard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arbash, Elias</au><au>Andréa de Lima Ribeiro</au><au>Thiele, Sam</au><au>Gnann, Nina</au><au>Rasti, Behnood</au><au>Fuchs, Margret</au><au>Ghamisi, Pedram</au><au>Gloaguen, Richard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Masking Hyperspectral Imaging Data with Pretrained Models</atitle><jtitle>arXiv.org</jtitle><date>2023-11-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The presence of undesired background areas associated with potential noise and unknown spectral characteristics degrades the performance of hyperspectral data processing. Masking out unwanted regions is key to addressing this issue. Processing only regions of interest yields notable improvements in terms of computational costs, required memory, and overall performance. The proposed processing pipeline encompasses two fundamental parts: regions of interest mask generation, followed by the application of hyperspectral data processing techniques solely on the newly masked hyperspectral cube. The novelty of our work lies in the methodology adopted for the preliminary image segmentation. We employ the Segment Anything Model (SAM) to extract all objects within the dataset, and subsequently refine the segments with a zero-shot Grounding Dino object detector, followed by intersection and exclusion filtering steps, without the need for fine-tuning or retraining. To illustrate the efficacy of the masking procedure, the proposed method is deployed on three challenging applications scenarios that demand accurate masking; shredded plastics characterization, drill core scanning, and litter monitoring. The numerical evaluation of the proposed masking method on the three applications is provided along with the used hyperparameters. The scripts for the method will be available at https://github.com/hifexplo/Masking.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886752899
source Free E- Journals
subjects Background noise
Data processing
Hyperspectral imaging
Image segmentation
Masking
Object recognition
Performance degradation
title Masking Hyperspectral Imaging Data with Pretrained Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Masking%20Hyperspectral%20Imaging%20Data%20with%20Pretrained%20Models&rft.jtitle=arXiv.org&rft.au=Arbash,%20Elias&rft.date=2023-11-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886752899%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886752899&rft_id=info:pmid/&rfr_iscdi=true