Variational Weighting for Kernel Density Ratios
Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, lead...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yoon, Sangwoong Park, Frank C Yun, Gunsu S Kim, Iljung Yung-Kyun Noh |
description | Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886750657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886750657</sourcerecordid><originalsourceid>FETCH-proquest_journals_28867506573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQD0ssykwsyczPS8xRCE_NTM8oycxLV0jLL1LwTi3KS81RcEnNK84sqVQIAqkq5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMOK440sLMzMTQ3MTM2NiVMFADlRMto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886750657</pqid></control><display><type>article</type><title>Variational Weighting for Kernel Density Ratios</title><source>Free E- Journals</source><creator>Yoon, Sangwoong ; Park, Frank C ; Yun, Gunsu S ; Kim, Iljung ; Yung-Kyun Noh</creator><creatorcontrib>Yoon, Sangwoong ; Park, Frank C ; Yun, Gunsu S ; Kim, Iljung ; Yung-Kyun Noh</creatorcontrib><description>Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Calculus of variations ; Density ; Estimates ; Information theory ; Kernels ; Machine learning ; Weight reduction ; Weighting functions</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yoon, Sangwoong</creatorcontrib><creatorcontrib>Park, Frank C</creatorcontrib><creatorcontrib>Yun, Gunsu S</creatorcontrib><creatorcontrib>Kim, Iljung</creatorcontrib><creatorcontrib>Yung-Kyun Noh</creatorcontrib><title>Variational Weighting for Kernel Density Ratios</title><title>arXiv.org</title><description>Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.</description><subject>Algorithms</subject><subject>Calculus of variations</subject><subject>Density</subject><subject>Estimates</subject><subject>Information theory</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Weight reduction</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQD0ssykwsyczPS8xRCE_NTM8oycxLV0jLL1LwTi3KS81RcEnNK84sqVQIAqkq5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMOK440sLMzMTQ3MTM2NiVMFADlRMto</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Yoon, Sangwoong</creator><creator>Park, Frank C</creator><creator>Yun, Gunsu S</creator><creator>Kim, Iljung</creator><creator>Yung-Kyun Noh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231106</creationdate><title>Variational Weighting for Kernel Density Ratios</title><author>Yoon, Sangwoong ; Park, Frank C ; Yun, Gunsu S ; Kim, Iljung ; Yung-Kyun Noh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28867506573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calculus of variations</topic><topic>Density</topic><topic>Estimates</topic><topic>Information theory</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Weight reduction</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Sangwoong</creatorcontrib><creatorcontrib>Park, Frank C</creatorcontrib><creatorcontrib>Yun, Gunsu S</creatorcontrib><creatorcontrib>Kim, Iljung</creatorcontrib><creatorcontrib>Yung-Kyun Noh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Sangwoong</au><au>Park, Frank C</au><au>Yun, Gunsu S</au><au>Kim, Iljung</au><au>Yung-Kyun Noh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variational Weighting for Kernel Density Ratios</atitle><jtitle>arXiv.org</jtitle><date>2023-11-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2886750657 |
source | Free E- Journals |
subjects | Algorithms Calculus of variations Density Estimates Information theory Kernels Machine learning Weight reduction Weighting functions |
title | Variational Weighting for Kernel Density Ratios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variational%20Weighting%20for%20Kernel%20Density%20Ratios&rft.jtitle=arXiv.org&rft.au=Yoon,%20Sangwoong&rft.date=2023-11-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886750657%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886750657&rft_id=info:pmid/&rfr_iscdi=true |