Variational Weighting for Kernel Density Ratios

Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Yoon, Sangwoong, Park, Frank C, Yun, Gunsu S, Kim, Iljung, Yung-Kyun Noh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yoon, Sangwoong
Park, Frank C
Yun, Gunsu S
Kim, Iljung
Yung-Kyun Noh
description Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886750657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886750657</sourcerecordid><originalsourceid>FETCH-proquest_journals_28867506573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQD0ssykwsyczPS8xRCE_NTM8oycxLV0jLL1LwTi3KS81RcEnNK84sqVQIAqkq5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMOK440sLMzMTQ3MTM2NiVMFADlRMto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886750657</pqid></control><display><type>article</type><title>Variational Weighting for Kernel Density Ratios</title><source>Free E- Journals</source><creator>Yoon, Sangwoong ; Park, Frank C ; Yun, Gunsu S ; Kim, Iljung ; Yung-Kyun Noh</creator><creatorcontrib>Yoon, Sangwoong ; Park, Frank C ; Yun, Gunsu S ; Kim, Iljung ; Yung-Kyun Noh</creatorcontrib><description>Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Calculus of variations ; Density ; Estimates ; Information theory ; Kernels ; Machine learning ; Weight reduction ; Weighting functions</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yoon, Sangwoong</creatorcontrib><creatorcontrib>Park, Frank C</creatorcontrib><creatorcontrib>Yun, Gunsu S</creatorcontrib><creatorcontrib>Kim, Iljung</creatorcontrib><creatorcontrib>Yung-Kyun Noh</creatorcontrib><title>Variational Weighting for Kernel Density Ratios</title><title>arXiv.org</title><description>Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.</description><subject>Algorithms</subject><subject>Calculus of variations</subject><subject>Density</subject><subject>Estimates</subject><subject>Information theory</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Weight reduction</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQD0ssykwsyczPS8xRCE_NTM8oycxLV0jLL1LwTi3KS81RcEnNK84sqVQIAqkq5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMOK440sLMzMTQ3MTM2NiVMFADlRMto</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Yoon, Sangwoong</creator><creator>Park, Frank C</creator><creator>Yun, Gunsu S</creator><creator>Kim, Iljung</creator><creator>Yung-Kyun Noh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231106</creationdate><title>Variational Weighting for Kernel Density Ratios</title><author>Yoon, Sangwoong ; Park, Frank C ; Yun, Gunsu S ; Kim, Iljung ; Yung-Kyun Noh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28867506573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calculus of variations</topic><topic>Density</topic><topic>Estimates</topic><topic>Information theory</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Weight reduction</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Sangwoong</creatorcontrib><creatorcontrib>Park, Frank C</creatorcontrib><creatorcontrib>Yun, Gunsu S</creatorcontrib><creatorcontrib>Kim, Iljung</creatorcontrib><creatorcontrib>Yung-Kyun Noh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Sangwoong</au><au>Park, Frank C</au><au>Yun, Gunsu S</au><au>Kim, Iljung</au><au>Yung-Kyun Noh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variational Weighting for Kernel Density Ratios</atitle><jtitle>arXiv.org</jtitle><date>2023-11-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Kernel density estimation (KDE) is integral to a range of generative and discriminative tasks in machine learning. Drawing upon tools from the multidimensional calculus of variations, we derive an optimal weight function that reduces bias in standard kernel density estimates for density ratios, leading to improved estimates of prediction posteriors and information-theoretic measures. In the process, we shed light on some fundamental aspects of density estimation, particularly from the perspective of algorithms that employ KDEs as their main building blocks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886750657
source Free E- Journals
subjects Algorithms
Calculus of variations
Density
Estimates
Information theory
Kernels
Machine learning
Weight reduction
Weighting functions
title Variational Weighting for Kernel Density Ratios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variational%20Weighting%20for%20Kernel%20Density%20Ratios&rft.jtitle=arXiv.org&rft.au=Yoon,%20Sangwoong&rft.date=2023-11-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886750657%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886750657&rft_id=info:pmid/&rfr_iscdi=true