The weighted geometric inequalities for static convex domains in static rotationally symmetric spaces

We consider a locally constrained curvature flow in a static rotationally symmetric space \(\mathbf{N}^{n+1}\), which was firstly introduced by Hu and Li in the hyperbolic space. We prove that if the initial hypersurface is graphical, then the smooth solution of the flow remains to be graphical, exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Pan, Shujing, Yang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pan, Shujing
Yang, Bo
description We consider a locally constrained curvature flow in a static rotationally symmetric space \(\mathbf{N}^{n+1}\), which was firstly introduced by Hu and Li in the hyperbolic space. We prove that if the initial hypersurface is graphical, then the smooth solution of the flow remains to be graphical, exists for all positive time \(t\in[0,\infty)\) and converges to a slice of \(\mathbf{N}^{n+1}\) exponentially in the smooth topology. Moreover, we prove that the flow preserves static convexity if the initial hypersurface is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense. As applications, we prove a family of weighted geometric inequalities for static convex domains which is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886745885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886745885</sourcerecordid><originalsourceid>FETCH-proquest_journals_28867458853</originalsourceid><addsrcrecordid>eNqNjNEKgjAYhUcQJOU7DLoWbDrdfRQ9gPcy9Fcnc9P9s_LtM7D7rj445ztnRwKWJJdIpIwdSIjYx3HMspxxngQEig7oC1TbeahpC3YA71RFlYFpllp5BUgb6yh66de8suYJb1rbQSqDq_YrnP3SGqn1QnEZth8cZQV4IvtGaoRw45Gc77fi-ohGZ6cZ0Je9nd26xZIJkeUpF4In_1kfKXlITA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886745885</pqid></control><display><type>article</type><title>The weighted geometric inequalities for static convex domains in static rotationally symmetric spaces</title><source>Free E- Journals</source><creator>Pan, Shujing ; Yang, Bo</creator><creatorcontrib>Pan, Shujing ; Yang, Bo</creatorcontrib><description>We consider a locally constrained curvature flow in a static rotationally symmetric space \(\mathbf{N}^{n+1}\), which was firstly introduced by Hu and Li in the hyperbolic space. We prove that if the initial hypersurface is graphical, then the smooth solution of the flow remains to be graphical, exists for all positive time \(t\in[0,\infty)\) and converges to a slice of \(\mathbf{N}^{n+1}\) exponentially in the smooth topology. Moreover, we prove that the flow preserves static convexity if the initial hypersurface is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense. As applications, we prove a family of weighted geometric inequalities for static convex domains which is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Hyperbolic coordinates ; Hyperspaces ; Inequalities ; Topology</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pan, Shujing</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><title>The weighted geometric inequalities for static convex domains in static rotationally symmetric spaces</title><title>arXiv.org</title><description>We consider a locally constrained curvature flow in a static rotationally symmetric space \(\mathbf{N}^{n+1}\), which was firstly introduced by Hu and Li in the hyperbolic space. We prove that if the initial hypersurface is graphical, then the smooth solution of the flow remains to be graphical, exists for all positive time \(t\in[0,\infty)\) and converges to a slice of \(\mathbf{N}^{n+1}\) exponentially in the smooth topology. Moreover, we prove that the flow preserves static convexity if the initial hypersurface is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense. As applications, we prove a family of weighted geometric inequalities for static convex domains which is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense.</description><subject>Convexity</subject><subject>Hyperbolic coordinates</subject><subject>Hyperspaces</subject><subject>Inequalities</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjNEKgjAYhUcQJOU7DLoWbDrdfRQ9gPcy9Fcnc9P9s_LtM7D7rj445ztnRwKWJJdIpIwdSIjYx3HMspxxngQEig7oC1TbeahpC3YA71RFlYFpllp5BUgb6yh66de8suYJb1rbQSqDq_YrnP3SGqn1QnEZth8cZQV4IvtGaoRw45Gc77fi-ohGZ6cZ0Je9nd26xZIJkeUpF4In_1kfKXlITA</recordid><startdate>20231104</startdate><enddate>20231104</enddate><creator>Pan, Shujing</creator><creator>Yang, Bo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231104</creationdate><title>The weighted geometric inequalities for static convex domains in static rotationally symmetric spaces</title><author>Pan, Shujing ; Yang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28867458853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Hyperbolic coordinates</topic><topic>Hyperspaces</topic><topic>Inequalities</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Shujing</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Shujing</au><au>Yang, Bo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The weighted geometric inequalities for static convex domains in static rotationally symmetric spaces</atitle><jtitle>arXiv.org</jtitle><date>2023-11-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider a locally constrained curvature flow in a static rotationally symmetric space \(\mathbf{N}^{n+1}\), which was firstly introduced by Hu and Li in the hyperbolic space. We prove that if the initial hypersurface is graphical, then the smooth solution of the flow remains to be graphical, exists for all positive time \(t\in[0,\infty)\) and converges to a slice of \(\mathbf{N}^{n+1}\) exponentially in the smooth topology. Moreover, we prove that the flow preserves static convexity if the initial hypersurface is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense. As applications, we prove a family of weighted geometric inequalities for static convex domains which is close to a slice of \(\mathbf{N}^{n+1}\) in the \(C^1\) sense.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886745885
source Free E- Journals
subjects Convexity
Hyperbolic coordinates
Hyperspaces
Inequalities
Topology
title The weighted geometric inequalities for static convex domains in static rotationally symmetric spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20weighted%20geometric%20inequalities%20for%20static%20convex%20domains%20in%20static%20rotationally%20symmetric%20spaces&rft.jtitle=arXiv.org&rft.au=Pan,%20Shujing&rft.date=2023-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886745885%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886745885&rft_id=info:pmid/&rfr_iscdi=true