MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data Augmentation for Whole Slide Image Classification
For classifying digital whole slide images in the absence of pixel level annotation, typically multiple instance learning methods are applied. Due to the generic applicability, such methods are currently of very high interest in the research community, however, the issue of data augmentation in this...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gadermayr, Michael Koller, Lukas Tschuchnig, Maximilian Stangassinger, Lea Maria Kreutzer, Christina Couillard-Despres, Sebastien Gertie Janneke Oostingh Hittmair, Anton |
description | For classifying digital whole slide images in the absence of pixel level annotation, typically multiple instance learning methods are applied. Due to the generic applicability, such methods are currently of very high interest in the research community, however, the issue of data augmentation in this context is rarely explored. Here we investigate linear and multilinear interpolation between feature vectors, a data augmentation technique, which proved to be capable of improving the generalization performance classification networks and also for multiple instance learning. Experiments, however, have been performed on only two rather small data sets and one specific feature extraction approach so far and a strong dependence on the data set has been identified. Here we conduct a large study incorporating 10 different data set configurations, two different feature extraction approaches (supervised and self-supervised), stain normalization and two multiple instance learning architectures. The results showed an extraordinarily high variability in the effect of the method. We identified several interesting aspects to bring light into the darkness and identified novel promising fields of research. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886745020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886745020</sourcerecordid><originalsourceid>FETCH-proquest_journals_28867450203</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWNR_uCC4K8TUanFXX1iwqyouJdhbTUmTmgfo3yvqB7gazpzpkIBF0SRMpoz1yNDamlLKZnMWx1FAfC4exzbMs_0CUiicL5-gFeyFQm5gDLmXTsjvypRD02rJndAqXHKLJay545D6a4PKfTxU2sDppiVCIUWJkDX8irCS3FpRicsnGpBuxaXF4Y99MtpuDqtd2Bp992jdudbeqPd1Zkkym09jymj0X_UCT25LKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886745020</pqid></control><display><type>article</type><title>MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data Augmentation for Whole Slide Image Classification</title><source>Free E- Journals</source><creator>Gadermayr, Michael ; Koller, Lukas ; Tschuchnig, Maximilian ; Stangassinger, Lea Maria ; Kreutzer, Christina ; Couillard-Despres, Sebastien ; Gertie Janneke Oostingh ; Hittmair, Anton</creator><creatorcontrib>Gadermayr, Michael ; Koller, Lukas ; Tschuchnig, Maximilian ; Stangassinger, Lea Maria ; Kreutzer, Christina ; Couillard-Despres, Sebastien ; Gertie Janneke Oostingh ; Hittmair, Anton</creatorcontrib><description>For classifying digital whole slide images in the absence of pixel level annotation, typically multiple instance learning methods are applied. Due to the generic applicability, such methods are currently of very high interest in the research community, however, the issue of data augmentation in this context is rarely explored. Here we investigate linear and multilinear interpolation between feature vectors, a data augmentation technique, which proved to be capable of improving the generalization performance classification networks and also for multiple instance learning. Experiments, however, have been performed on only two rather small data sets and one specific feature extraction approach so far and a strong dependence on the data set has been identified. Here we conduct a large study incorporating 10 different data set configurations, two different feature extraction approaches (supervised and self-supervised), stain normalization and two multiple instance learning architectures. The results showed an extraordinarily high variability in the effect of the method. We identified several interesting aspects to bring light into the darkness and identified novel promising fields of research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Darkness ; Data augmentation ; Datasets ; Digital imaging ; Feature extraction ; Image classification ; Interpolation ; Learning</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Gadermayr, Michael</creatorcontrib><creatorcontrib>Koller, Lukas</creatorcontrib><creatorcontrib>Tschuchnig, Maximilian</creatorcontrib><creatorcontrib>Stangassinger, Lea Maria</creatorcontrib><creatorcontrib>Kreutzer, Christina</creatorcontrib><creatorcontrib>Couillard-Despres, Sebastien</creatorcontrib><creatorcontrib>Gertie Janneke Oostingh</creatorcontrib><creatorcontrib>Hittmair, Anton</creatorcontrib><title>MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data Augmentation for Whole Slide Image Classification</title><title>arXiv.org</title><description>For classifying digital whole slide images in the absence of pixel level annotation, typically multiple instance learning methods are applied. Due to the generic applicability, such methods are currently of very high interest in the research community, however, the issue of data augmentation in this context is rarely explored. Here we investigate linear and multilinear interpolation between feature vectors, a data augmentation technique, which proved to be capable of improving the generalization performance classification networks and also for multiple instance learning. Experiments, however, have been performed on only two rather small data sets and one specific feature extraction approach so far and a strong dependence on the data set has been identified. Here we conduct a large study incorporating 10 different data set configurations, two different feature extraction approaches (supervised and self-supervised), stain normalization and two multiple instance learning architectures. The results showed an extraordinarily high variability in the effect of the method. We identified several interesting aspects to bring light into the darkness and identified novel promising fields of research.</description><subject>Annotations</subject><subject>Darkness</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Interpolation</subject><subject>Learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAUBYMgWNR_uCC4K8TUanFXX1iwqyouJdhbTUmTmgfo3yvqB7gazpzpkIBF0SRMpoz1yNDamlLKZnMWx1FAfC4exzbMs_0CUiicL5-gFeyFQm5gDLmXTsjvypRD02rJndAqXHKLJay545D6a4PKfTxU2sDppiVCIUWJkDX8irCS3FpRicsnGpBuxaXF4Y99MtpuDqtd2Bp992jdudbeqPd1Zkkym09jymj0X_UCT25LKA</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Gadermayr, Michael</creator><creator>Koller, Lukas</creator><creator>Tschuchnig, Maximilian</creator><creator>Stangassinger, Lea Maria</creator><creator>Kreutzer, Christina</creator><creator>Couillard-Despres, Sebastien</creator><creator>Gertie Janneke Oostingh</creator><creator>Hittmair, Anton</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231206</creationdate><title>MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data Augmentation for Whole Slide Image Classification</title><author>Gadermayr, Michael ; Koller, Lukas ; Tschuchnig, Maximilian ; Stangassinger, Lea Maria ; Kreutzer, Christina ; Couillard-Despres, Sebastien ; Gertie Janneke Oostingh ; Hittmair, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28867450203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Darkness</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Interpolation</topic><topic>Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Gadermayr, Michael</creatorcontrib><creatorcontrib>Koller, Lukas</creatorcontrib><creatorcontrib>Tschuchnig, Maximilian</creatorcontrib><creatorcontrib>Stangassinger, Lea Maria</creatorcontrib><creatorcontrib>Kreutzer, Christina</creatorcontrib><creatorcontrib>Couillard-Despres, Sebastien</creatorcontrib><creatorcontrib>Gertie Janneke Oostingh</creatorcontrib><creatorcontrib>Hittmair, Anton</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadermayr, Michael</au><au>Koller, Lukas</au><au>Tschuchnig, Maximilian</au><au>Stangassinger, Lea Maria</au><au>Kreutzer, Christina</au><au>Couillard-Despres, Sebastien</au><au>Gertie Janneke Oostingh</au><au>Hittmair, Anton</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data Augmentation for Whole Slide Image Classification</atitle><jtitle>arXiv.org</jtitle><date>2023-12-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>For classifying digital whole slide images in the absence of pixel level annotation, typically multiple instance learning methods are applied. Due to the generic applicability, such methods are currently of very high interest in the research community, however, the issue of data augmentation in this context is rarely explored. Here we investigate linear and multilinear interpolation between feature vectors, a data augmentation technique, which proved to be capable of improving the generalization performance classification networks and also for multiple instance learning. Experiments, however, have been performed on only two rather small data sets and one specific feature extraction approach so far and a strong dependence on the data set has been identified. Here we conduct a large study incorporating 10 different data set configurations, two different feature extraction approaches (supervised and self-supervised), stain normalization and two multiple instance learning architectures. The results showed an extraordinarily high variability in the effect of the method. We identified several interesting aspects to bring light into the darkness and identified novel promising fields of research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2886745020 |
source | Free E- Journals |
subjects | Annotations Darkness Data augmentation Datasets Digital imaging Feature extraction Image classification Interpolation Learning |
title | MixUp-MIL: A Study on Linear & Multilinear Interpolation-Based Data Augmentation for Whole Slide Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MixUp-MIL:%20A%20Study%20on%20Linear%20&%20Multilinear%20Interpolation-Based%20Data%20Augmentation%20for%20Whole%20Slide%20Image%20Classification&rft.jtitle=arXiv.org&rft.au=Gadermayr,%20Michael&rft.date=2023-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886745020%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886745020&rft_id=info:pmid/&rfr_iscdi=true |