Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean
This study evaluates the performance of 39 CMIP5 models participating in the Coordinated Ocean Wave Climate Project phase 2 (COWCLIP2.0) for simulating extreme significant wave height (SWH) indices in the Indian Ocean (IO) for the 26-year period from 1979 to 2005, using the ERA5 wave reanalysis as o...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2023-12, Vol.61 (11-12), p.5747-5765 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5765 |
---|---|
container_issue | 11-12 |
container_start_page | 5747 |
container_title | Climate dynamics |
container_volume | 61 |
creator | Kaur, Sukhwinder Kumar, Prashant Min, Seung-Ki Krishnan, Athira Wang, Xiolan L. |
description | This study evaluates the performance of 39 CMIP5 models participating in the Coordinated Ocean Wave Climate Project phase 2 (COWCLIP2.0) for simulating extreme significant wave height (SWH) indices in the Indian Ocean (IO) for the 26-year period from 1979 to 2005, using the ERA5 wave reanalysis as observation proxy. The multiple skill metrics of bias, root mean square error (RMSE), relative error (RE), interannual variability skill-score (IVS), comprehensive rating index (CRI), and total ranking (TR) are utilized to evaluate the CMIP5 models consisting of four clusters (ECCC(s), CSIRO, ECCC(d), and JRC) over the Northern IO (NIO), SouthernTropical IO (STIO), and Southern IO (SIO) sub-domains. The three extreme SWH indices are considered: rough wave days (HsRo), high wave days (HsHi), and top decile wave spell duration indicator (HHsDI). Climatology evaluation results indicate that the ECCC(s) cluster models and MME exhibit better agreements with the ERA5 reanalysis data (with smaller biases, RMSEs, and REs) than the other clusters over all sub-domains for HsRo and HsHi indices. Whereas most models display reasonable skills at simulating interannual variability of HsRo, HsHi is poorly captured by all clusters over the NIO and STIO, with a large inter-model spread in IVS values. HHsDI is found to be simulated well by all clusters regarding the climatology pattern and interannual variability, reflecting the characteristics of percentile-based indices. Integrated assessment based on CRI and TR analysis confirms the overall superiority of ECCC(s) cluster models in simulating mean and interannual variability of extreme SWH indices over all IO subdomains. |
doi_str_mv | 10.1007/s00382-023-06882-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2886744419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786928943</galeid><sourcerecordid>A786928943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a9616666621a68255e7853bdd6e282fcccdb1418c152422e6eb23bacd0c841323</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVJoNMkf6ArQaE0C0_1trwMQx6GgSlJS5ZCI1_POHisVLInyb-PHBfa6SLSQuLwncu99yD0mZI5JST_HgnhmmWE8YwonX7FBzSjgidJF-IIzUjBSZbLXH5En2J8IIQKlbMZKi_3th1s3_gO-xovVveLZfmDzQleObAdfrJ7wPDcB9gBbrqqcRCx30PA_RZwmYQEvaGn6Li2bYSzP-8J-nV1-XNxky1X1-XiYpk5IVWf2UJRNR5GrdJMSsi15OuqUsA0q51z1ZoKqh2VTDAGCtaMr62riNOCcsZP0Lep7mPwvweIvdk10UHb2g78EA2nksucp7ET-uU_9MEPoUvdGaa1yoUQtEjUfKI2tgXTdLXvg3XpVrBrnO-gbpJ-kWtVsLFqMpwfGBLTpxVt7BCjKe9uD9mv_7BbsG2_jb4dxoXHQ5BNoAs-xgC1eQzNzoYXQ4kZMzZTxiZlbN4yNmPrfDLFBHcbCH8HfMf1Ckl6pGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886744419</pqid></control><display><type>article</type><title>Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean</title><source>Springer Nature - Complete Springer Journals</source><creator>Kaur, Sukhwinder ; Kumar, Prashant ; Min, Seung-Ki ; Krishnan, Athira ; Wang, Xiolan L.</creator><creatorcontrib>Kaur, Sukhwinder ; Kumar, Prashant ; Min, Seung-Ki ; Krishnan, Athira ; Wang, Xiolan L.</creatorcontrib><description>This study evaluates the performance of 39 CMIP5 models participating in the Coordinated Ocean Wave Climate Project phase 2 (COWCLIP2.0) for simulating extreme significant wave height (SWH) indices in the Indian Ocean (IO) for the 26-year period from 1979 to 2005, using the ERA5 wave reanalysis as observation proxy. The multiple skill metrics of bias, root mean square error (RMSE), relative error (RE), interannual variability skill-score (IVS), comprehensive rating index (CRI), and total ranking (TR) are utilized to evaluate the CMIP5 models consisting of four clusters (ECCC(s), CSIRO, ECCC(d), and JRC) over the Northern IO (NIO), SouthernTropical IO (STIO), and Southern IO (SIO) sub-domains. The three extreme SWH indices are considered: rough wave days (HsRo), high wave days (HsHi), and top decile wave spell duration indicator (HHsDI). Climatology evaluation results indicate that the ECCC(s) cluster models and MME exhibit better agreements with the ERA5 reanalysis data (with smaller biases, RMSEs, and REs) than the other clusters over all sub-domains for HsRo and HsHi indices. Whereas most models display reasonable skills at simulating interannual variability of HsRo, HsHi is poorly captured by all clusters over the NIO and STIO, with a large inter-model spread in IVS values. HHsDI is found to be simulated well by all clusters regarding the climatology pattern and interannual variability, reflecting the characteristics of percentile-based indices. Integrated assessment based on CRI and TR analysis confirms the overall superiority of ECCC(s) cluster models in simulating mean and interannual variability of extreme SWH indices over all IO subdomains.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-023-06882-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; climate ; Climate change ; Climate models ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Geophysics/Geodesy ; Indian Ocean ; Mean square errors ; Ocean waves ; Oceanography ; Oceans ; Performance evaluation</subject><ispartof>Climate dynamics, 2023-12, Vol.61 (11-12), p.5747-5765</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a9616666621a68255e7853bdd6e282fcccdb1418c152422e6eb23bacd0c841323</citedby><cites>FETCH-LOGICAL-c456t-a9616666621a68255e7853bdd6e282fcccdb1418c152422e6eb23bacd0c841323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-023-06882-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-023-06882-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kaur, Sukhwinder</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Min, Seung-Ki</creatorcontrib><creatorcontrib>Krishnan, Athira</creatorcontrib><creatorcontrib>Wang, Xiolan L.</creatorcontrib><title>Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>This study evaluates the performance of 39 CMIP5 models participating in the Coordinated Ocean Wave Climate Project phase 2 (COWCLIP2.0) for simulating extreme significant wave height (SWH) indices in the Indian Ocean (IO) for the 26-year period from 1979 to 2005, using the ERA5 wave reanalysis as observation proxy. The multiple skill metrics of bias, root mean square error (RMSE), relative error (RE), interannual variability skill-score (IVS), comprehensive rating index (CRI), and total ranking (TR) are utilized to evaluate the CMIP5 models consisting of four clusters (ECCC(s), CSIRO, ECCC(d), and JRC) over the Northern IO (NIO), SouthernTropical IO (STIO), and Southern IO (SIO) sub-domains. The three extreme SWH indices are considered: rough wave days (HsRo), high wave days (HsHi), and top decile wave spell duration indicator (HHsDI). Climatology evaluation results indicate that the ECCC(s) cluster models and MME exhibit better agreements with the ERA5 reanalysis data (with smaller biases, RMSEs, and REs) than the other clusters over all sub-domains for HsRo and HsHi indices. Whereas most models display reasonable skills at simulating interannual variability of HsRo, HsHi is poorly captured by all clusters over the NIO and STIO, with a large inter-model spread in IVS values. HHsDI is found to be simulated well by all clusters regarding the climatology pattern and interannual variability, reflecting the characteristics of percentile-based indices. Integrated assessment based on CRI and TR analysis confirms the overall superiority of ECCC(s) cluster models in simulating mean and interannual variability of extreme SWH indices over all IO subdomains.</description><subject>Analysis</subject><subject>climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Geophysics/Geodesy</subject><subject>Indian Ocean</subject><subject>Mean square errors</subject><subject>Ocean waves</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Performance evaluation</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtr3DAUhUVJoNMkf6ArQaE0C0_1trwMQx6GgSlJS5ZCI1_POHisVLInyb-PHBfa6SLSQuLwncu99yD0mZI5JST_HgnhmmWE8YwonX7FBzSjgidJF-IIzUjBSZbLXH5En2J8IIQKlbMZKi_3th1s3_gO-xovVveLZfmDzQleObAdfrJ7wPDcB9gBbrqqcRCx30PA_RZwmYQEvaGn6Li2bYSzP-8J-nV1-XNxky1X1-XiYpk5IVWf2UJRNR5GrdJMSsi15OuqUsA0q51z1ZoKqh2VTDAGCtaMr62riNOCcsZP0Lep7mPwvweIvdk10UHb2g78EA2nksucp7ET-uU_9MEPoUvdGaa1yoUQtEjUfKI2tgXTdLXvg3XpVrBrnO-gbpJ-kWtVsLFqMpwfGBLTpxVt7BCjKe9uD9mv_7BbsG2_jb4dxoXHQ5BNoAs-xgC1eQzNzoYXQ4kZMzZTxiZlbN4yNmPrfDLFBHcbCH8HfMf1Ckl6pGI</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kaur, Sukhwinder</creator><creator>Kumar, Prashant</creator><creator>Min, Seung-Ki</creator><creator>Krishnan, Athira</creator><creator>Wang, Xiolan L.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231201</creationdate><title>Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean</title><author>Kaur, Sukhwinder ; Kumar, Prashant ; Min, Seung-Ki ; Krishnan, Athira ; Wang, Xiolan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a9616666621a68255e7853bdd6e282fcccdb1418c152422e6eb23bacd0c841323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Geophysics/Geodesy</topic><topic>Indian Ocean</topic><topic>Mean square errors</topic><topic>Ocean waves</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Sukhwinder</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Min, Seung-Ki</creatorcontrib><creatorcontrib>Krishnan, Athira</creatorcontrib><creatorcontrib>Wang, Xiolan L.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Sukhwinder</au><au>Kumar, Prashant</au><au>Min, Seung-Ki</au><au>Krishnan, Athira</au><au>Wang, Xiolan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>61</volume><issue>11-12</issue><spage>5747</spage><epage>5765</epage><pages>5747-5765</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>This study evaluates the performance of 39 CMIP5 models participating in the Coordinated Ocean Wave Climate Project phase 2 (COWCLIP2.0) for simulating extreme significant wave height (SWH) indices in the Indian Ocean (IO) for the 26-year period from 1979 to 2005, using the ERA5 wave reanalysis as observation proxy. The multiple skill metrics of bias, root mean square error (RMSE), relative error (RE), interannual variability skill-score (IVS), comprehensive rating index (CRI), and total ranking (TR) are utilized to evaluate the CMIP5 models consisting of four clusters (ECCC(s), CSIRO, ECCC(d), and JRC) over the Northern IO (NIO), SouthernTropical IO (STIO), and Southern IO (SIO) sub-domains. The three extreme SWH indices are considered: rough wave days (HsRo), high wave days (HsHi), and top decile wave spell duration indicator (HHsDI). Climatology evaluation results indicate that the ECCC(s) cluster models and MME exhibit better agreements with the ERA5 reanalysis data (with smaller biases, RMSEs, and REs) than the other clusters over all sub-domains for HsRo and HsHi indices. Whereas most models display reasonable skills at simulating interannual variability of HsRo, HsHi is poorly captured by all clusters over the NIO and STIO, with a large inter-model spread in IVS values. HHsDI is found to be simulated well by all clusters regarding the climatology pattern and interannual variability, reflecting the characteristics of percentile-based indices. Integrated assessment based on CRI and TR analysis confirms the overall superiority of ECCC(s) cluster models in simulating mean and interannual variability of extreme SWH indices over all IO subdomains.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-023-06882-9</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2023-12, Vol.61 (11-12), p.5747-5765 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2886744419 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis climate Climate change Climate models Climatology Earth and Environmental Science Earth Sciences Extreme weather Geophysics/Geodesy Indian Ocean Mean square errors Ocean waves Oceanography Oceans Performance evaluation |
title | Evaluation of COWCLIP2.0 Ocean wave extreme indices over the Indian Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20COWCLIP2.0%20Ocean%20wave%20extreme%20indices%20over%20the%20Indian%20Ocean&rft.jtitle=Climate%20dynamics&rft.au=Kaur,%20Sukhwinder&rft.date=2023-12-01&rft.volume=61&rft.issue=11-12&rft.spage=5747&rft.epage=5765&rft.pages=5747-5765&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-023-06882-9&rft_dat=%3Cgale_proqu%3EA786928943%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886744419&rft_id=info:pmid/&rft_galeid=A786928943&rfr_iscdi=true |