Recent progress of cold sintering process on functional ceramic materials
Traditionally ceramic materials are fabricated at high temperatures (> 1000 ℃) by classical sintering techniques such as solid state, liquid phase and pressure-assisted sintering. Recently, a novelty cold sintering process (CSP) is widely developed to prepare ceramics and ceramic-based composites...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-11, Vol.34 (31), p.2105, Article 2105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 31 |
container_start_page | 2105 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Li, Yuchen Zhao, Xuetong Kang, Shenglin Xiao, Yongjian Ren, Chengjun Guo, Jing Wang, Xilin |
description | Traditionally ceramic materials are fabricated at high temperatures (> 1000 ℃) by classical sintering techniques such as solid state, liquid phase and pressure-assisted sintering. Recently, a novelty cold sintering process (CSP) is widely developed to prepare ceramics and ceramic-based composites at incredibly low temperatures (≤ 300 ℃), providing new options for reducing the energy consumption during the ceramics manufacture. In this work, we review the processing features and possible densification mechanisms of CSP and its application in advanced functional ceramic materials, such as ZnO-based ceramics, piezoelectric ceramics, microwave dielectric ceramics, electrolytes ceramics, multilayer ceramics, and their composites. CSP creates a new opportunity to design grain boundaries and develop new types of functional ceramics and ceramic-polymer composites among material combinations that previously had incompatible processing windows. The work presents the viability of CSP as a competitive and sustainable alternative to other high-temperature sintering techniques. |
doi_str_mv | 10.1007/s10854-023-11460-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886743525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886743525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8fbebb6ceff29111e1512680e4d5ac3d6d66e9105ad09ed2998440a76a8b6fd83</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFZfwNWA69Ez10yWUtQWCoIouBsmkzMlpU3qTLrw7U0awZ2rs_gv_Ocj5JbDPQcoHjIHqxUDIRnnygCDMzLjupBMWfF5TmZQ6oIpLcQlucp5CwBGSTsjqzcM2Pb0kLpNwpxpF2nodjXNTdtjatrNKIWT0tJ4bEPfdK3f0YDJ75tA9360-V2-JhdxOHjze-fk4_npfbFk69eX1eJxzYIooGc2VlhVJmCMouScI9dcGAuoau2DrE1tDJYctK-hxFqUpVUKfGG8rUysrZyTu6l32PV1xNy7bXdMw6TshLWmUFILPbjE5AqpyzlhdIfU7H36dhzciMxNyNyAzJ2QORhCcgrlw_g5pr_qf1I_btxvSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886743525</pqid></control><display><type>article</type><title>Recent progress of cold sintering process on functional ceramic materials</title><source>SpringerNature Journals</source><creator>Li, Yuchen ; Zhao, Xuetong ; Kang, Shenglin ; Xiao, Yongjian ; Ren, Chengjun ; Guo, Jing ; Wang, Xilin</creator><creatorcontrib>Li, Yuchen ; Zhao, Xuetong ; Kang, Shenglin ; Xiao, Yongjian ; Ren, Chengjun ; Guo, Jing ; Wang, Xilin</creatorcontrib><description>Traditionally ceramic materials are fabricated at high temperatures (> 1000 ℃) by classical sintering techniques such as solid state, liquid phase and pressure-assisted sintering. Recently, a novelty cold sintering process (CSP) is widely developed to prepare ceramics and ceramic-based composites at incredibly low temperatures (≤ 300 ℃), providing new options for reducing the energy consumption during the ceramics manufacture. In this work, we review the processing features and possible densification mechanisms of CSP and its application in advanced functional ceramic materials, such as ZnO-based ceramics, piezoelectric ceramics, microwave dielectric ceramics, electrolytes ceramics, multilayer ceramics, and their composites. CSP creates a new opportunity to design grain boundaries and develop new types of functional ceramics and ceramic-polymer composites among material combinations that previously had incompatible processing windows. The work presents the viability of CSP as a competitive and sustainable alternative to other high-temperature sintering techniques.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11460-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold ; Cold pressing ; Cold sintering ; Electric properties ; Energy consumption ; Hot pressing ; Laser sintering ; Materials Science ; Optical and Electronic Materials ; Plasma sintering ; Review ; Temperature</subject><ispartof>Journal of materials science. Materials in electronics, 2023-11, Vol.34 (31), p.2105, Article 2105</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8fbebb6ceff29111e1512680e4d5ac3d6d66e9105ad09ed2998440a76a8b6fd83</cites><orcidid>0000-0002-1510-5791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11460-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11460-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Zhao, Xuetong</creatorcontrib><creatorcontrib>Kang, Shenglin</creatorcontrib><creatorcontrib>Xiao, Yongjian</creatorcontrib><creatorcontrib>Ren, Chengjun</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Wang, Xilin</creatorcontrib><title>Recent progress of cold sintering process on functional ceramic materials</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Traditionally ceramic materials are fabricated at high temperatures (> 1000 ℃) by classical sintering techniques such as solid state, liquid phase and pressure-assisted sintering. Recently, a novelty cold sintering process (CSP) is widely developed to prepare ceramics and ceramic-based composites at incredibly low temperatures (≤ 300 ℃), providing new options for reducing the energy consumption during the ceramics manufacture. In this work, we review the processing features and possible densification mechanisms of CSP and its application in advanced functional ceramic materials, such as ZnO-based ceramics, piezoelectric ceramics, microwave dielectric ceramics, electrolytes ceramics, multilayer ceramics, and their composites. CSP creates a new opportunity to design grain boundaries and develop new types of functional ceramics and ceramic-polymer composites among material combinations that previously had incompatible processing windows. The work presents the viability of CSP as a competitive and sustainable alternative to other high-temperature sintering techniques.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Cold pressing</subject><subject>Cold sintering</subject><subject>Electric properties</subject><subject>Energy consumption</subject><subject>Hot pressing</subject><subject>Laser sintering</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Plasma sintering</subject><subject>Review</subject><subject>Temperature</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKw0AUhgdRsFZfwNWA69Ez10yWUtQWCoIouBsmkzMlpU3qTLrw7U0awZ2rs_gv_Ocj5JbDPQcoHjIHqxUDIRnnygCDMzLjupBMWfF5TmZQ6oIpLcQlucp5CwBGSTsjqzcM2Pb0kLpNwpxpF2nodjXNTdtjatrNKIWT0tJ4bEPfdK3f0YDJ75tA9360-V2-JhdxOHjze-fk4_npfbFk69eX1eJxzYIooGc2VlhVJmCMouScI9dcGAuoau2DrE1tDJYctK-hxFqUpVUKfGG8rUysrZyTu6l32PV1xNy7bXdMw6TshLWmUFILPbjE5AqpyzlhdIfU7H36dhzciMxNyNyAzJ2QORhCcgrlw_g5pr_qf1I_btxvSQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Li, Yuchen</creator><creator>Zhao, Xuetong</creator><creator>Kang, Shenglin</creator><creator>Xiao, Yongjian</creator><creator>Ren, Chengjun</creator><creator>Guo, Jing</creator><creator>Wang, Xilin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1510-5791</orcidid></search><sort><creationdate>20231101</creationdate><title>Recent progress of cold sintering process on functional ceramic materials</title><author>Li, Yuchen ; Zhao, Xuetong ; Kang, Shenglin ; Xiao, Yongjian ; Ren, Chengjun ; Guo, Jing ; Wang, Xilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8fbebb6ceff29111e1512680e4d5ac3d6d66e9105ad09ed2998440a76a8b6fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Cold pressing</topic><topic>Cold sintering</topic><topic>Electric properties</topic><topic>Energy consumption</topic><topic>Hot pressing</topic><topic>Laser sintering</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Plasma sintering</topic><topic>Review</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Zhao, Xuetong</creatorcontrib><creatorcontrib>Kang, Shenglin</creatorcontrib><creatorcontrib>Xiao, Yongjian</creatorcontrib><creatorcontrib>Ren, Chengjun</creatorcontrib><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Wang, Xilin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuchen</au><au>Zhao, Xuetong</au><au>Kang, Shenglin</au><au>Xiao, Yongjian</au><au>Ren, Chengjun</au><au>Guo, Jing</au><au>Wang, Xilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent progress of cold sintering process on functional ceramic materials</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>34</volume><issue>31</issue><spage>2105</spage><pages>2105-</pages><artnum>2105</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Traditionally ceramic materials are fabricated at high temperatures (> 1000 ℃) by classical sintering techniques such as solid state, liquid phase and pressure-assisted sintering. Recently, a novelty cold sintering process (CSP) is widely developed to prepare ceramics and ceramic-based composites at incredibly low temperatures (≤ 300 ℃), providing new options for reducing the energy consumption during the ceramics manufacture. In this work, we review the processing features and possible densification mechanisms of CSP and its application in advanced functional ceramic materials, such as ZnO-based ceramics, piezoelectric ceramics, microwave dielectric ceramics, electrolytes ceramics, multilayer ceramics, and their composites. CSP creates a new opportunity to design grain boundaries and develop new types of functional ceramics and ceramic-polymer composites among material combinations that previously had incompatible processing windows. The work presents the viability of CSP as a competitive and sustainable alternative to other high-temperature sintering techniques.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11460-0</doi><orcidid>https://orcid.org/0000-0002-1510-5791</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-11, Vol.34 (31), p.2105, Article 2105 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2886743525 |
source | SpringerNature Journals |
subjects | Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Cold Cold pressing Cold sintering Electric properties Energy consumption Hot pressing Laser sintering Materials Science Optical and Electronic Materials Plasma sintering Review Temperature |
title | Recent progress of cold sintering process on functional ceramic materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20progress%20of%20cold%20sintering%20process%20on%20functional%20ceramic%20materials&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Li,%20Yuchen&rft.date=2023-11-01&rft.volume=34&rft.issue=31&rft.spage=2105&rft.pages=2105-&rft.artnum=2105&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11460-0&rft_dat=%3Cproquest_cross%3E2886743525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886743525&rft_id=info:pmid/&rfr_iscdi=true |