Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping

The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks. However, current soft grippers usually focus on the in-plane large deformation and load capacity but ignore the effect of out-of-plane externa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2023-11, Vol.66 (11), p.3080-3089
Hauptverfasser: Li, DeChen, Chen, ShiTong, Song, ZeNan, Liang, JiaLong, Zhu, XiangYang, Chen, FeiFei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3089
container_issue 11
container_start_page 3080
container_title Science China. Technological sciences
container_volume 66
creator Li, DeChen
Chen, ShiTong
Song, ZeNan
Liang, JiaLong
Zhu, XiangYang
Chen, FeiFei
description The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks. However, current soft grippers usually focus on the in-plane large deformation and load capacity but ignore the effect of out-of-plane external loads, which may lead to instability in practical scenarios. This problem calls for stiffness design along multiple directions to withstand not only in-plane interacting forces with objects, but also unexpected out-of-plane loads. In this paper, we design a new type of soft finger by embedding an endoskeleton inside the widely-used Pneu-Nets actuator, and the endoskeleton layout is optimized to achieve a remarkable bending deflection and limited lateral deflection under combined external in-plane and out-of-plane loads. Based on the multi-objective topology optimization approach, the key structural features of the optimized endoskeleton are extracted and parameterized. The multi-material soft fingers are fabricated by the silicone compound mold method. Static and dynamic experiment results validate that the soft gripper with endoskeleton embedded exhibits remarkably improved out-of-plane stiffness, without sacrificing the in-plane bending flexibility, and leads to more stable grasping.
doi_str_mv 10.1007/s11431-022-2346-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886630914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886630914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dc5ff07ff831b71a7f2d825675ab94d309563c48b14628aaf1ac98334e95d84a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52i-Nps9SvELCl7qOWR3k5q6TdYkPVT_vKlb8ORcZhjmeQceAK4JviUY13eJEM4IwpQiyrhA4gzMiBQNIg3G52UWNUc1o-QSLFLa4lJMNpjwGfheazeE6PwG5ncDnUfjoL2B2vcw7DMK9rRI2VnrTUowWJiCzdAWyMQE2wM0vg_pwwwmBw9zGMMQNgcYxux27ktnV7Y2xJKh28HATdRpLPAVuLB6SGZx6nPw9viwXj6j1evTy_J-hTpGREZ9V1mLa2slI21NdG1pL2kl6kq3De8ZbirBOi5bwgWVWluiu0Yyxk1T9ZJrNgc3U-4Yw-fepKy2YR99eamolEKUhOJvDsh01cWQUjRWjdHtdDwogtVRs5o0q6JZHTUrURg6MWmMvzb-kv-HfgCGaYGK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886630914</pqid></control><display><type>article</type><title>Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, DeChen ; Chen, ShiTong ; Song, ZeNan ; Liang, JiaLong ; Zhu, XiangYang ; Chen, FeiFei</creator><creatorcontrib>Li, DeChen ; Chen, ShiTong ; Song, ZeNan ; Liang, JiaLong ; Zhu, XiangYang ; Chen, FeiFei</creatorcontrib><description>The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks. However, current soft grippers usually focus on the in-plane large deformation and load capacity but ignore the effect of out-of-plane external loads, which may lead to instability in practical scenarios. This problem calls for stiffness design along multiple directions to withstand not only in-plane interacting forces with objects, but also unexpected out-of-plane loads. In this paper, we design a new type of soft finger by embedding an endoskeleton inside the widely-used Pneu-Nets actuator, and the endoskeleton layout is optimized to achieve a remarkable bending deflection and limited lateral deflection under combined external in-plane and out-of-plane loads. Based on the multi-objective topology optimization approach, the key structural features of the optimized endoskeleton are extracted and parameterized. The multi-material soft fingers are fabricated by the silicone compound mold method. Static and dynamic experiment results validate that the soft gripper with endoskeleton embedded exhibits remarkably improved out-of-plane stiffness, without sacrificing the in-plane bending flexibility, and leads to more stable grasping.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-022-2346-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Actuators ; Bending ; Deflection ; Deformation effects ; Embedding ; Engineering ; Fingers ; Grippers ; Multiple objective analysis ; Stiffness ; Topology optimization</subject><ispartof>Science China. Technological sciences, 2023-11, Vol.66 (11), p.3080-3089</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dc5ff07ff831b71a7f2d825675ab94d309563c48b14628aaf1ac98334e95d84a3</citedby><cites>FETCH-LOGICAL-c316t-dc5ff07ff831b71a7f2d825675ab94d309563c48b14628aaf1ac98334e95d84a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-022-2346-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-022-2346-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, DeChen</creatorcontrib><creatorcontrib>Chen, ShiTong</creatorcontrib><creatorcontrib>Song, ZeNan</creatorcontrib><creatorcontrib>Liang, JiaLong</creatorcontrib><creatorcontrib>Zhu, XiangYang</creatorcontrib><creatorcontrib>Chen, FeiFei</creatorcontrib><title>Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks. However, current soft grippers usually focus on the in-plane large deformation and load capacity but ignore the effect of out-of-plane external loads, which may lead to instability in practical scenarios. This problem calls for stiffness design along multiple directions to withstand not only in-plane interacting forces with objects, but also unexpected out-of-plane loads. In this paper, we design a new type of soft finger by embedding an endoskeleton inside the widely-used Pneu-Nets actuator, and the endoskeleton layout is optimized to achieve a remarkable bending deflection and limited lateral deflection under combined external in-plane and out-of-plane loads. Based on the multi-objective topology optimization approach, the key structural features of the optimized endoskeleton are extracted and parameterized. The multi-material soft fingers are fabricated by the silicone compound mold method. Static and dynamic experiment results validate that the soft gripper with endoskeleton embedded exhibits remarkably improved out-of-plane stiffness, without sacrificing the in-plane bending flexibility, and leads to more stable grasping.</description><subject>Actuators</subject><subject>Bending</subject><subject>Deflection</subject><subject>Deformation effects</subject><subject>Embedding</subject><subject>Engineering</subject><subject>Fingers</subject><subject>Grippers</subject><subject>Multiple objective analysis</subject><subject>Stiffness</subject><subject>Topology optimization</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52i-Nps9SvELCl7qOWR3k5q6TdYkPVT_vKlb8ORcZhjmeQceAK4JviUY13eJEM4IwpQiyrhA4gzMiBQNIg3G52UWNUc1o-QSLFLa4lJMNpjwGfheazeE6PwG5ncDnUfjoL2B2vcw7DMK9rRI2VnrTUowWJiCzdAWyMQE2wM0vg_pwwwmBw9zGMMQNgcYxux27ktnV7Y2xJKh28HATdRpLPAVuLB6SGZx6nPw9viwXj6j1evTy_J-hTpGREZ9V1mLa2slI21NdG1pL2kl6kq3De8ZbirBOi5bwgWVWluiu0Yyxk1T9ZJrNgc3U-4Yw-fepKy2YR99eamolEKUhOJvDsh01cWQUjRWjdHtdDwogtVRs5o0q6JZHTUrURg6MWmMvzb-kv-HfgCGaYGK</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Li, DeChen</creator><creator>Chen, ShiTong</creator><creator>Song, ZeNan</creator><creator>Liang, JiaLong</creator><creator>Zhu, XiangYang</creator><creator>Chen, FeiFei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping</title><author>Li, DeChen ; Chen, ShiTong ; Song, ZeNan ; Liang, JiaLong ; Zhu, XiangYang ; Chen, FeiFei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dc5ff07ff831b71a7f2d825675ab94d309563c48b14628aaf1ac98334e95d84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Bending</topic><topic>Deflection</topic><topic>Deformation effects</topic><topic>Embedding</topic><topic>Engineering</topic><topic>Fingers</topic><topic>Grippers</topic><topic>Multiple objective analysis</topic><topic>Stiffness</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, DeChen</creatorcontrib><creatorcontrib>Chen, ShiTong</creatorcontrib><creatorcontrib>Song, ZeNan</creatorcontrib><creatorcontrib>Liang, JiaLong</creatorcontrib><creatorcontrib>Zhu, XiangYang</creatorcontrib><creatorcontrib>Chen, FeiFei</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, DeChen</au><au>Chen, ShiTong</au><au>Song, ZeNan</au><au>Liang, JiaLong</au><au>Zhu, XiangYang</au><au>Chen, FeiFei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>11</issue><spage>3080</spage><epage>3089</epage><pages>3080-3089</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>The intrinsic compliance of soft materials endows soft robots with great advantages to achieve large deformation and adaptive interactions in grasping tasks. However, current soft grippers usually focus on the in-plane large deformation and load capacity but ignore the effect of out-of-plane external loads, which may lead to instability in practical scenarios. This problem calls for stiffness design along multiple directions to withstand not only in-plane interacting forces with objects, but also unexpected out-of-plane loads. In this paper, we design a new type of soft finger by embedding an endoskeleton inside the widely-used Pneu-Nets actuator, and the endoskeleton layout is optimized to achieve a remarkable bending deflection and limited lateral deflection under combined external in-plane and out-of-plane loads. Based on the multi-objective topology optimization approach, the key structural features of the optimized endoskeleton are extracted and parameterized. The multi-material soft fingers are fabricated by the silicone compound mold method. Static and dynamic experiment results validate that the soft gripper with endoskeleton embedded exhibits remarkably improved out-of-plane stiffness, without sacrificing the in-plane bending flexibility, and leads to more stable grasping.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-022-2346-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2023-11, Vol.66 (11), p.3080-3089
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2886630914
source SpringerLink Journals; Alma/SFX Local Collection
subjects Actuators
Bending
Deflection
Deformation effects
Embedding
Engineering
Fingers
Grippers
Multiple objective analysis
Stiffness
Topology optimization
title Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20in-plane%20and%20out-of-plane%20stiffness%20of%20soft%20fingers%20by%20endoskeleton%20topology%20optimization%20for%20stable%20grasping&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Li,%20DeChen&rft.date=2023-11-01&rft.volume=66&rft.issue=11&rft.spage=3080&rft.epage=3089&rft.pages=3080-3089&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-022-2346-6&rft_dat=%3Cproquest_cross%3E2886630914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886630914&rft_id=info:pmid/&rfr_iscdi=true