Lattice Boltzmann study on the effects of surface nanostructure on wettability with application in laser scanning fabrication of superhydrophobic surfaces

Nanostructured surfaces with dimensions on a scale of a few millimeters exhibit remarkable hydrophobicity. The geometry of these nanostructures considerably affects their wettability. However, determining the optimal geometry is challenging due to the abundance of geometry parameters and the difficu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2023-11, Vol.66 (11), p.3197-3205
Hauptverfasser: Huang, Hao, Guo, MingHui, Wu, CongYi, Rong, YouMin, Huang, Yu, Zhang, GuoJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3205
container_issue 11
container_start_page 3197
container_title Science China. Technological sciences
container_volume 66
creator Huang, Hao
Guo, MingHui
Wu, CongYi
Rong, YouMin
Huang, Yu
Zhang, GuoJun
description Nanostructured surfaces with dimensions on a scale of a few millimeters exhibit remarkable hydrophobicity. The geometry of these nanostructures considerably affects their wettability. However, determining the optimal geometry is challenging due to the abundance of geometry parameters and the difficulty in numerically describing their effects on wettability at the mesoscopic scale. In addition, the fabrication of nanostructured surfaces with precise geometries is challenging. We establish a lattice Boltzmann method (LBM) model to address these challenges. We use the model to gain mesoscopic insights into the interaction between droplets and nanostructures. Our model can accurately reproduce contact angles (CAs) on various nanostructured surfaces and enables investigation of the effects of nanostructure geometry on wettability. We optimize the geometry of the nanostructures using the insights provided by the LBM model on the wettability mechanisms. Our analysis indicates that cones with dimensions of 40 µm in width and 33 µm in height exhibit the highest hydrophobicity. We successfully fabricate a superhydrophobic surface with the desired geometry via laser scanning, achieving a CA of 163°. We believe that this approach, which combines the LBM model and laser manufacturing, will enable a better understanding of the wettability mechanism and provide a high-performance approach for fabricating superhydrophobic surfaces.
doi_str_mv 10.1007/s11431-023-2457-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886630874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886630874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-27c8bfa34855ed5fbdd40d15135a15c1373c393a4ac6d38570d3045aaa4f14b53</originalsourceid><addsrcrecordid>eNp1kU9LxDAQxYsoKOoH8BbwXM00SdM9qvgPFrzoOUzTxI3UpCYpsn4UP61ZV_HkXGZgfu-9w6uqE6BnQKk8TwCcQU0bVjdcyFruVAfQtYsaFpTulruVvJasgf3qOKUXWoZ1Cwr8oPpcYs5OG3IZxvzxit6TlOdhTYIneWWIsdbonEiwJM3RYiE9-pBynHWeo9lw7yZn7N3o8pq8u7wiOE2j05hdeTpPRkwmkqSLufPPxGIff7_ftpOJq_UQw7QKvdO_Oemo2rM4JnP8sw-rp5vrx6u7evlwe391saw1gzbXjdRdb5HxTggzCNsPA6cDCGACQWhgkmm2YMhRtwPrhKQDo1wgIrfAe8EOq9Ot7xTD22xSVi9hjr5Eqqbr2pbRTvJCwZbSMaQUjVVTdK8Y1wqo2rSgti2o0oLatKBk0TRbTSqsfzbxz_l_0RfZNI4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886630874</pqid></control><display><type>article</type><title>Lattice Boltzmann study on the effects of surface nanostructure on wettability with application in laser scanning fabrication of superhydrophobic surfaces</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Hao ; Guo, MingHui ; Wu, CongYi ; Rong, YouMin ; Huang, Yu ; Zhang, GuoJun</creator><creatorcontrib>Huang, Hao ; Guo, MingHui ; Wu, CongYi ; Rong, YouMin ; Huang, Yu ; Zhang, GuoJun</creatorcontrib><description>Nanostructured surfaces with dimensions on a scale of a few millimeters exhibit remarkable hydrophobicity. The geometry of these nanostructures considerably affects their wettability. However, determining the optimal geometry is challenging due to the abundance of geometry parameters and the difficulty in numerically describing their effects on wettability at the mesoscopic scale. In addition, the fabrication of nanostructured surfaces with precise geometries is challenging. We establish a lattice Boltzmann method (LBM) model to address these challenges. We use the model to gain mesoscopic insights into the interaction between droplets and nanostructures. Our model can accurately reproduce contact angles (CAs) on various nanostructured surfaces and enables investigation of the effects of nanostructure geometry on wettability. We optimize the geometry of the nanostructures using the insights provided by the LBM model on the wettability mechanisms. Our analysis indicates that cones with dimensions of 40 µm in width and 33 µm in height exhibit the highest hydrophobicity. We successfully fabricate a superhydrophobic surface with the desired geometry via laser scanning, achieving a CA of 163°. We believe that this approach, which combines the LBM model and laser manufacturing, will enable a better understanding of the wettability mechanism and provide a high-performance approach for fabricating superhydrophobic surfaces.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-023-2457-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Contact angle ; Engineering ; Geometry ; Hydrophobic surfaces ; Hydrophobicity ; Laser applications ; Lasers ; Nanostructure ; Optimization ; Wettability</subject><ispartof>Science China. Technological sciences, 2023-11, Vol.66 (11), p.3197-3205</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-27c8bfa34855ed5fbdd40d15135a15c1373c393a4ac6d38570d3045aaa4f14b53</citedby><cites>FETCH-LOGICAL-c316t-27c8bfa34855ed5fbdd40d15135a15c1373c393a4ac6d38570d3045aaa4f14b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-023-2457-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-023-2457-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Guo, MingHui</creatorcontrib><creatorcontrib>Wu, CongYi</creatorcontrib><creatorcontrib>Rong, YouMin</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhang, GuoJun</creatorcontrib><title>Lattice Boltzmann study on the effects of surface nanostructure on wettability with application in laser scanning fabrication of superhydrophobic surfaces</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Nanostructured surfaces with dimensions on a scale of a few millimeters exhibit remarkable hydrophobicity. The geometry of these nanostructures considerably affects their wettability. However, determining the optimal geometry is challenging due to the abundance of geometry parameters and the difficulty in numerically describing their effects on wettability at the mesoscopic scale. In addition, the fabrication of nanostructured surfaces with precise geometries is challenging. We establish a lattice Boltzmann method (LBM) model to address these challenges. We use the model to gain mesoscopic insights into the interaction between droplets and nanostructures. Our model can accurately reproduce contact angles (CAs) on various nanostructured surfaces and enables investigation of the effects of nanostructure geometry on wettability. We optimize the geometry of the nanostructures using the insights provided by the LBM model on the wettability mechanisms. Our analysis indicates that cones with dimensions of 40 µm in width and 33 µm in height exhibit the highest hydrophobicity. We successfully fabricate a superhydrophobic surface with the desired geometry via laser scanning, achieving a CA of 163°. We believe that this approach, which combines the LBM model and laser manufacturing, will enable a better understanding of the wettability mechanism and provide a high-performance approach for fabricating superhydrophobic surfaces.</description><subject>Contact angle</subject><subject>Engineering</subject><subject>Geometry</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Wettability</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU9LxDAQxYsoKOoH8BbwXM00SdM9qvgPFrzoOUzTxI3UpCYpsn4UP61ZV_HkXGZgfu-9w6uqE6BnQKk8TwCcQU0bVjdcyFruVAfQtYsaFpTulruVvJasgf3qOKUXWoZ1Cwr8oPpcYs5OG3IZxvzxit6TlOdhTYIneWWIsdbonEiwJM3RYiE9-pBynHWeo9lw7yZn7N3o8pq8u7wiOE2j05hdeTpPRkwmkqSLufPPxGIff7_ftpOJq_UQw7QKvdO_Oemo2rM4JnP8sw-rp5vrx6u7evlwe391saw1gzbXjdRdb5HxTggzCNsPA6cDCGACQWhgkmm2YMhRtwPrhKQDo1wgIrfAe8EOq9Ot7xTD22xSVi9hjr5Eqqbr2pbRTvJCwZbSMaQUjVVTdK8Y1wqo2rSgti2o0oLatKBk0TRbTSqsfzbxz_l_0RfZNI4k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Huang, Hao</creator><creator>Guo, MingHui</creator><creator>Wu, CongYi</creator><creator>Rong, YouMin</creator><creator>Huang, Yu</creator><creator>Zhang, GuoJun</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Lattice Boltzmann study on the effects of surface nanostructure on wettability with application in laser scanning fabrication of superhydrophobic surfaces</title><author>Huang, Hao ; Guo, MingHui ; Wu, CongYi ; Rong, YouMin ; Huang, Yu ; Zhang, GuoJun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-27c8bfa34855ed5fbdd40d15135a15c1373c393a4ac6d38570d3045aaa4f14b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contact angle</topic><topic>Engineering</topic><topic>Geometry</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Guo, MingHui</creatorcontrib><creatorcontrib>Wu, CongYi</creatorcontrib><creatorcontrib>Rong, YouMin</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Zhang, GuoJun</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hao</au><au>Guo, MingHui</au><au>Wu, CongYi</au><au>Rong, YouMin</au><au>Huang, Yu</au><au>Zhang, GuoJun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann study on the effects of surface nanostructure on wettability with application in laser scanning fabrication of superhydrophobic surfaces</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>66</volume><issue>11</issue><spage>3197</spage><epage>3205</epage><pages>3197-3205</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Nanostructured surfaces with dimensions on a scale of a few millimeters exhibit remarkable hydrophobicity. The geometry of these nanostructures considerably affects their wettability. However, determining the optimal geometry is challenging due to the abundance of geometry parameters and the difficulty in numerically describing their effects on wettability at the mesoscopic scale. In addition, the fabrication of nanostructured surfaces with precise geometries is challenging. We establish a lattice Boltzmann method (LBM) model to address these challenges. We use the model to gain mesoscopic insights into the interaction between droplets and nanostructures. Our model can accurately reproduce contact angles (CAs) on various nanostructured surfaces and enables investigation of the effects of nanostructure geometry on wettability. We optimize the geometry of the nanostructures using the insights provided by the LBM model on the wettability mechanisms. Our analysis indicates that cones with dimensions of 40 µm in width and 33 µm in height exhibit the highest hydrophobicity. We successfully fabricate a superhydrophobic surface with the desired geometry via laser scanning, achieving a CA of 163°. We believe that this approach, which combines the LBM model and laser manufacturing, will enable a better understanding of the wettability mechanism and provide a high-performance approach for fabricating superhydrophobic surfaces.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-023-2457-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2023-11, Vol.66 (11), p.3197-3205
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2886630874
source SpringerNature Journals; Alma/SFX Local Collection
subjects Contact angle
Engineering
Geometry
Hydrophobic surfaces
Hydrophobicity
Laser applications
Lasers
Nanostructure
Optimization
Wettability
title Lattice Boltzmann study on the effects of surface nanostructure on wettability with application in laser scanning fabrication of superhydrophobic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20study%20on%20the%20effects%20of%20surface%20nanostructure%20on%20wettability%20with%20application%20in%20laser%20scanning%20fabrication%20of%20superhydrophobic%20surfaces&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Huang,%20Hao&rft.date=2023-11-01&rft.volume=66&rft.issue=11&rft.spage=3197&rft.epage=3205&rft.pages=3197-3205&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-023-2457-7&rft_dat=%3Cproquest_cross%3E2886630874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886630874&rft_id=info:pmid/&rfr_iscdi=true