USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots
In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent years, numerous public datasets have played significant roles in th...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2023-09, Vol.42 (11), p.1015-1047 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1047 |
---|---|
container_issue | 11 |
container_start_page | 1015 |
container_title | The International journal of robotics research |
container_volume | 42 |
creator | Wang, Ziming Liu, Yujiang Duan, Yifan Li, Xingchen Zhang, Xinran Ji, Jianmin Dong, Erbao Zhang, Yanyong |
description | In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent years, numerous public datasets have played significant roles in the advancement of autonomous cars and unmanned aerial vehicles (UAVs). However, these two platforms differ from aerial work robots: UAVs are limited in their payload capacity, while cars are restricted to two-dimensional movements. To fill this gap, we create the “Giraffe” mapping robot based on a bucket truck, which is equipped with a variety of well-calibrated and synchronized sensors: four 3D LiDARs, two stereo cameras, two monocular cameras, Inertial Measurement Units (IMUs), and a GNSS/INS system. A laser tracker is used to record the millimeter-level ground truth positions. We also make its ground twin, the “Okapi” mapping robot, to gather data for comparison. The proposed dataset extends the typical autonomous driving sensing suite to aerial scenes, demonstrating the potential of combining autonomous driving perception systems with bucket trucks to create a versatile autonomous aerial working platform. Moreover, based on the Segment Anything Model (SAM), we produce the Semantic FLICAR dataset, which provides fine-grained semantic segmentation annotations for multimodal continuous data in both temporal and spatial dimensions. The dataset is available for download at: https://ustc-flicar.github.io/. |
doi_str_mv | 10.1177/02783649231195650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886584328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649231195650</sage_id><sourcerecordid>2886584328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f1b399b942c6dce6842c4fc917d0c5b04840389d214dfe7bdfc3d6b9edcb44123</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdWpek0nclWpVKAi1XQ-ZPHT6mNQko_TfO6WCC3F1D9zvnAMHgGuCR4SU5S2mpWSCK8oIUYUo8AkYkJITxEgpTsHg8EcH4BxcpLTCGDOB1QCsl6-LCZzOnifj-R0cw-TaFGKCvktNaKHVWSeXYfBw1tyP56hpXcyN3iCjty5q6EOE705_7pHt8h7qLoc2bEOXoHax5-BXiGsYQx1yugRnXm-Su_q5Q7CcPiwmT2j28tj3z5BhhGbkSc2UqhWnRljjhOwF90aR0mJT1JhLjplUlhJuvStr6w2zolbOmppzQtkQ3BxzdzF8dC7lahW62PaVFZVSFJIzKnuKHCkTQ0rR-WoXm62O-4rg6rBp9WfT3jM6epJ-c7-p_xu-Aan5dl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886584328</pqid></control><display><type>article</type><title>USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots</title><source>Access via SAGE</source><creator>Wang, Ziming ; Liu, Yujiang ; Duan, Yifan ; Li, Xingchen ; Zhang, Xinran ; Ji, Jianmin ; Dong, Erbao ; Zhang, Yanyong</creator><creatorcontrib>Wang, Ziming ; Liu, Yujiang ; Duan, Yifan ; Li, Xingchen ; Zhang, Xinran ; Ji, Jianmin ; Dong, Erbao ; Zhang, Yanyong</creatorcontrib><description>In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent years, numerous public datasets have played significant roles in the advancement of autonomous cars and unmanned aerial vehicles (UAVs). However, these two platforms differ from aerial work robots: UAVs are limited in their payload capacity, while cars are restricted to two-dimensional movements. To fill this gap, we create the “Giraffe” mapping robot based on a bucket truck, which is equipped with a variety of well-calibrated and synchronized sensors: four 3D LiDARs, two stereo cameras, two monocular cameras, Inertial Measurement Units (IMUs), and a GNSS/INS system. A laser tracker is used to record the millimeter-level ground truth positions. We also make its ground twin, the “Okapi” mapping robot, to gather data for comparison. The proposed dataset extends the typical autonomous driving sensing suite to aerial scenes, demonstrating the potential of combining autonomous driving perception systems with bucket trucks to create a versatile autonomous aerial working platform. Moreover, based on the Segment Anything Model (SAM), we produce the Semantic FLICAR dataset, which provides fine-grained semantic segmentation annotations for multimodal continuous data in both temporal and spatial dimensions. The dataset is available for download at: https://ustc-flicar.github.io/.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649231195650</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Automobiles ; Autonomous cars ; Cameras ; Datasets ; Driving ; Image reconstruction ; Inertial platforms ; Multisensor fusion ; Robots ; Semantic segmentation ; Semantics ; Sensors ; Simultaneous localization and mapping ; Unmanned aerial vehicles</subject><ispartof>The International journal of robotics research, 2023-09, Vol.42 (11), p.1015-1047</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f1b399b942c6dce6842c4fc917d0c5b04840389d214dfe7bdfc3d6b9edcb44123</citedby><cites>FETCH-LOGICAL-c312t-f1b399b942c6dce6842c4fc917d0c5b04840389d214dfe7bdfc3d6b9edcb44123</cites><orcidid>0009-0005-0161-9539 ; 0000-0002-4062-9730 ; 0000-0003-0499-6848 ; 0009-0004-0754-3953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02783649231195650$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02783649231195650$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21828,27933,27934,43630,43631</link.rule.ids></links><search><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Liu, Yujiang</creatorcontrib><creatorcontrib>Duan, Yifan</creatorcontrib><creatorcontrib>Li, Xingchen</creatorcontrib><creatorcontrib>Zhang, Xinran</creatorcontrib><creatorcontrib>Ji, Jianmin</creatorcontrib><creatorcontrib>Dong, Erbao</creatorcontrib><creatorcontrib>Zhang, Yanyong</creatorcontrib><title>USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots</title><title>The International journal of robotics research</title><description>In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent years, numerous public datasets have played significant roles in the advancement of autonomous cars and unmanned aerial vehicles (UAVs). However, these two platforms differ from aerial work robots: UAVs are limited in their payload capacity, while cars are restricted to two-dimensional movements. To fill this gap, we create the “Giraffe” mapping robot based on a bucket truck, which is equipped with a variety of well-calibrated and synchronized sensors: four 3D LiDARs, two stereo cameras, two monocular cameras, Inertial Measurement Units (IMUs), and a GNSS/INS system. A laser tracker is used to record the millimeter-level ground truth positions. We also make its ground twin, the “Okapi” mapping robot, to gather data for comparison. The proposed dataset extends the typical autonomous driving sensing suite to aerial scenes, demonstrating the potential of combining autonomous driving perception systems with bucket trucks to create a versatile autonomous aerial working platform. Moreover, based on the Segment Anything Model (SAM), we produce the Semantic FLICAR dataset, which provides fine-grained semantic segmentation annotations for multimodal continuous data in both temporal and spatial dimensions. The dataset is available for download at: https://ustc-flicar.github.io/.</description><subject>Automobiles</subject><subject>Autonomous cars</subject><subject>Cameras</subject><subject>Datasets</subject><subject>Driving</subject><subject>Image reconstruction</subject><subject>Inertial platforms</subject><subject>Multisensor fusion</subject><subject>Robots</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Unmanned aerial vehicles</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdWpek0nclWpVKAi1XQ-ZPHT6mNQko_TfO6WCC3F1D9zvnAMHgGuCR4SU5S2mpWSCK8oIUYUo8AkYkJITxEgpTsHg8EcH4BxcpLTCGDOB1QCsl6-LCZzOnifj-R0cw-TaFGKCvktNaKHVWSeXYfBw1tyP56hpXcyN3iCjty5q6EOE705_7pHt8h7qLoc2bEOXoHax5-BXiGsYQx1yugRnXm-Su_q5Q7CcPiwmT2j28tj3z5BhhGbkSc2UqhWnRljjhOwF90aR0mJT1JhLjplUlhJuvStr6w2zolbOmppzQtkQ3BxzdzF8dC7lahW62PaVFZVSFJIzKnuKHCkTQ0rR-WoXm62O-4rg6rBp9WfT3jM6epJ-c7-p_xu-Aan5dl8</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Wang, Ziming</creator><creator>Liu, Yujiang</creator><creator>Duan, Yifan</creator><creator>Li, Xingchen</creator><creator>Zhang, Xinran</creator><creator>Ji, Jianmin</creator><creator>Dong, Erbao</creator><creator>Zhang, Yanyong</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0005-0161-9539</orcidid><orcidid>https://orcid.org/0000-0002-4062-9730</orcidid><orcidid>https://orcid.org/0000-0003-0499-6848</orcidid><orcidid>https://orcid.org/0009-0004-0754-3953</orcidid></search><sort><creationdate>202309</creationdate><title>USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots</title><author>Wang, Ziming ; Liu, Yujiang ; Duan, Yifan ; Li, Xingchen ; Zhang, Xinran ; Ji, Jianmin ; Dong, Erbao ; Zhang, Yanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f1b399b942c6dce6842c4fc917d0c5b04840389d214dfe7bdfc3d6b9edcb44123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automobiles</topic><topic>Autonomous cars</topic><topic>Cameras</topic><topic>Datasets</topic><topic>Driving</topic><topic>Image reconstruction</topic><topic>Inertial platforms</topic><topic>Multisensor fusion</topic><topic>Robots</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Liu, Yujiang</creatorcontrib><creatorcontrib>Duan, Yifan</creatorcontrib><creatorcontrib>Li, Xingchen</creatorcontrib><creatorcontrib>Zhang, Xinran</creatorcontrib><creatorcontrib>Ji, Jianmin</creatorcontrib><creatorcontrib>Dong, Erbao</creatorcontrib><creatorcontrib>Zhang, Yanyong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ziming</au><au>Liu, Yujiang</au><au>Duan, Yifan</au><au>Li, Xingchen</au><au>Zhang, Xinran</au><au>Ji, Jianmin</au><au>Dong, Erbao</au><au>Zhang, Yanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots</atitle><jtitle>The International journal of robotics research</jtitle><date>2023-09</date><risdate>2023</risdate><volume>42</volume><issue>11</issue><spage>1015</spage><epage>1047</epage><pages>1015-1047</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>In this paper, we present the USTC FLICAR Dataset, which is dedicated to the development of simultaneous localization and mapping and precise 3D reconstruction of the workspace for heavy-duty autonomous aerial work robots. In recent years, numerous public datasets have played significant roles in the advancement of autonomous cars and unmanned aerial vehicles (UAVs). However, these two platforms differ from aerial work robots: UAVs are limited in their payload capacity, while cars are restricted to two-dimensional movements. To fill this gap, we create the “Giraffe” mapping robot based on a bucket truck, which is equipped with a variety of well-calibrated and synchronized sensors: four 3D LiDARs, two stereo cameras, two monocular cameras, Inertial Measurement Units (IMUs), and a GNSS/INS system. A laser tracker is used to record the millimeter-level ground truth positions. We also make its ground twin, the “Okapi” mapping robot, to gather data for comparison. The proposed dataset extends the typical autonomous driving sensing suite to aerial scenes, demonstrating the potential of combining autonomous driving perception systems with bucket trucks to create a versatile autonomous aerial working platform. Moreover, based on the Segment Anything Model (SAM), we produce the Semantic FLICAR dataset, which provides fine-grained semantic segmentation annotations for multimodal continuous data in both temporal and spatial dimensions. The dataset is available for download at: https://ustc-flicar.github.io/.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649231195650</doi><tpages>33</tpages><orcidid>https://orcid.org/0009-0005-0161-9539</orcidid><orcidid>https://orcid.org/0000-0002-4062-9730</orcidid><orcidid>https://orcid.org/0000-0003-0499-6848</orcidid><orcidid>https://orcid.org/0009-0004-0754-3953</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2023-09, Vol.42 (11), p.1015-1047 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2886584328 |
source | Access via SAGE |
subjects | Automobiles Autonomous cars Cameras Datasets Driving Image reconstruction Inertial platforms Multisensor fusion Robots Semantic segmentation Semantics Sensors Simultaneous localization and mapping Unmanned aerial vehicles |
title | USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USTC%20FLICAR:%20A%20sensors%20fusion%20dataset%20of%20LiDAR-inertial-camera%20for%20heavy-duty%20autonomous%20aerial%20work%20robots&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Wang,%20Ziming&rft.date=2023-09&rft.volume=42&rft.issue=11&rft.spage=1015&rft.epage=1047&rft.pages=1015-1047&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649231195650&rft_dat=%3Cproquest_cross%3E2886584328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886584328&rft_id=info:pmid/&rft_sage_id=10.1177_02783649231195650&rfr_iscdi=true |