Online Evidential Nearest Neighbour Classification for Internet of Things Time Series

The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2023-12, Vol.91 (3), p.395-426
Hauptverfasser: Toman, Patrick, Ravishanker, Nalini, Rajasekaran, Sanguthevar, Lally, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 3
container_start_page 395
container_title International statistical review
container_volume 91
creator Toman, Patrick
Ravishanker, Nalini
Rajasekaran, Sanguthevar
Lally, Nathan
description The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k ‐nearest neighbours ( k NN) methods. We extend these to dynamical k NN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential k NN ( ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic and approaches for classifying a large, noisy IoT time series dataset from an insurance firm.
doi_str_mv 10.1111/insr.12540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886548416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886548416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-e3e8c5ce67ab6db9c02a2dd572ec5776644c9a87f60520f077464125f57c33193</originalsourceid><addsrcrecordid>eNotkE9PAjEUxBujiYhe_ARNvJks9n_L0RBEEiIH4dyU7iuULF1sFxO_vYs4l7lM3pv5IfRIyYj2eomp5BFlUpArNKBa0koaxq_RgHCiKq25uEV3pewJIZwZMUDrZWpiAjz9jjWkLroGf4DLULre43a3aU8ZTxpXSgzRuy62CYc243nqICfocBvwahfTtuBVPAD-hByh3KOb4JoCD_8-ROu36WryXi2Ws_nkdVF5Rk1XAQfjpQel3UbVm7EnzLG6lpqBl1orJYQfO6ODIpKRQLQWSvTrgtSeczrmQ_R0uXvM7depL233fd_Uv7TMGCWFEVT1qedLyue2lAzBHnM8uPxjKbFnbPaMzf5h4796HF_v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886548416</pqid></control><display><type>article</type><title>Online Evidential Nearest Neighbour Classification for Internet of Things Time Series</title><source>Wiley-Blackwell Journals</source><creator>Toman, Patrick ; Ravishanker, Nalini ; Rajasekaran, Sanguthevar ; Lally, Nathan</creator><creatorcontrib>Toman, Patrick ; Ravishanker, Nalini ; Rajasekaran, Sanguthevar ; Lally, Nathan</creatorcontrib><description>The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k ‐nearest neighbours ( k NN) methods. We extend these to dynamical k NN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential k NN ( ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic and approaches for classifying a large, noisy IoT time series dataset from an insurance firm.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12540</identifier><language>eng</language><publisher>Hoboken: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Classification ; Classifiers ; Internet of Things ; Sensors ; Time series ; Uncertainty</subject><ispartof>International statistical review, 2023-12, Vol.91 (3), p.395-426</ispartof><rights>2023 International Statistical Institute.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-e3e8c5ce67ab6db9c02a2dd572ec5776644c9a87f60520f077464125f57c33193</cites><orcidid>0000-0002-2028-4771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Toman, Patrick</creatorcontrib><creatorcontrib>Ravishanker, Nalini</creatorcontrib><creatorcontrib>Rajasekaran, Sanguthevar</creatorcontrib><creatorcontrib>Lally, Nathan</creatorcontrib><title>Online Evidential Nearest Neighbour Classification for Internet of Things Time Series</title><title>International statistical review</title><description>The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k ‐nearest neighbours ( k NN) methods. We extend these to dynamical k NN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential k NN ( ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic and approaches for classifying a large, noisy IoT time series dataset from an insurance firm.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Internet of Things</subject><subject>Sensors</subject><subject>Time series</subject><subject>Uncertainty</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE9PAjEUxBujiYhe_ARNvJks9n_L0RBEEiIH4dyU7iuULF1sFxO_vYs4l7lM3pv5IfRIyYj2eomp5BFlUpArNKBa0koaxq_RgHCiKq25uEV3pewJIZwZMUDrZWpiAjz9jjWkLroGf4DLULre43a3aU8ZTxpXSgzRuy62CYc243nqICfocBvwahfTtuBVPAD-hByh3KOb4JoCD_8-ROu36WryXi2Ws_nkdVF5Rk1XAQfjpQel3UbVm7EnzLG6lpqBl1orJYQfO6ODIpKRQLQWSvTrgtSeczrmQ_R0uXvM7depL233fd_Uv7TMGCWFEVT1qedLyue2lAzBHnM8uPxjKbFnbPaMzf5h4796HF_v</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Toman, Patrick</creator><creator>Ravishanker, Nalini</creator><creator>Rajasekaran, Sanguthevar</creator><creator>Lally, Nathan</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2028-4771</orcidid></search><sort><creationdate>202312</creationdate><title>Online Evidential Nearest Neighbour Classification for Internet of Things Time Series</title><author>Toman, Patrick ; Ravishanker, Nalini ; Rajasekaran, Sanguthevar ; Lally, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-e3e8c5ce67ab6db9c02a2dd572ec5776644c9a87f60520f077464125f57c33193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Internet of Things</topic><topic>Sensors</topic><topic>Time series</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toman, Patrick</creatorcontrib><creatorcontrib>Ravishanker, Nalini</creatorcontrib><creatorcontrib>Rajasekaran, Sanguthevar</creatorcontrib><creatorcontrib>Lally, Nathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toman, Patrick</au><au>Ravishanker, Nalini</au><au>Rajasekaran, Sanguthevar</au><au>Lally, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Evidential Nearest Neighbour Classification for Internet of Things Time Series</atitle><jtitle>International statistical review</jtitle><date>2023-12</date><risdate>2023</risdate><volume>91</volume><issue>3</issue><spage>395</spage><epage>426</epage><pages>395-426</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>The ‘Internet of Things’ (IoT) is a rapidly developing set of technologies that leverages large numbers of networked sensors, to relay data in an online fashion. Typically, knowledge of the sensor environment is incomplete and subject to changes over time. There is a need to employ classification algorithms to understand the data. We first review of existing time series classification (TSC) approaches, with emphasis on the well‐known k ‐nearest neighbours ( k NN) methods. We extend these to dynamical k NN classifiers, and discuss their shortcomings for handling the inherent uncertainty in IoT data. We next review evidential k NN ( ) classifiers that leverage the well‐known Dempster–Shafer theory to allow principled uncertainty quantification. We develop a dynamic approach for classifying IoT streams via algorithms that use evidential theoretic pattern rejection rules for (i) classifying incoming patterns into a set of oracle classes, (ii) automatically pruning ambiguously labelled patterns such as aberrant streams (due to malfunctioning sensors, say), and (iii) identifying novel classes that may emerge in new subsequences over time. While these methods have wide applicability in many domains, we illustrate the dynamic and approaches for classifying a large, noisy IoT time series dataset from an insurance firm.</abstract><cop>Hoboken</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/insr.12540</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-2028-4771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 2023-12, Vol.91 (3), p.395-426
issn 0306-7734
1751-5823
language eng
recordid cdi_proquest_journals_2886548416
source Wiley-Blackwell Journals
subjects Algorithms
Classification
Classifiers
Internet of Things
Sensors
Time series
Uncertainty
title Online Evidential Nearest Neighbour Classification for Internet of Things Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Evidential%20Nearest%20Neighbour%20Classification%20for%20Internet%20of%20Things%20Time%20Series&rft.jtitle=International%20statistical%20review&rft.au=Toman,%20Patrick&rft.date=2023-12&rft.volume=91&rft.issue=3&rft.spage=395&rft.epage=426&rft.pages=395-426&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12540&rft_dat=%3Cproquest_cross%3E2886548416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886548416&rft_id=info:pmid/&rfr_iscdi=true