Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation

The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-11, Vol.62 (46), p.n/a
Hauptverfasser: Wang, Yang, Wang, Wenhang, He, Ruosong, Li, Meng, Zhang, Jinqiang, Cao, Fengliang, Liu, Jianxin, Lin, Shiyuan, Gao, Xinhua, Yang, Guohui, Wang, Mingqing, Xing, Tao, Liu, Tao, Liu, Qiang, Hu, Han, Tsubaki, Noritatsu, Wu, Mingbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Angewandte Chemie International Edition
container_volume 62
creator Wang, Yang
Wang, Wenhang
He, Ruosong
Li, Meng
Zhang, Jinqiang
Cao, Fengliang
Liu, Jianxin
Lin, Shiyuan
Gao, Xinhua
Yang, Guohui
Wang, Mingqing
Xing, Tao
Liu, Tao
Liu, Qiang
Hu, Han
Tsubaki, Noritatsu
Wu, Mingbo
description The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron‐transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron‐transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co‐feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis. A carbon‐based electron buffer layer was employed to neutralize the excessive electrons transferred from ZnOx to Fe species. A suitable CO adsorption strength and C−C coupling barrier was achieved as a consequence of the Fe‐based active sites, yielding a high ethanol yield of 366.6 gEtOH kgcat−1 h−1 from CO2+H2. The result differs from the common ZnFe bimetallic catalyst for which hydrocarbons dominate.
doi_str_mv 10.1002/anie.202311786
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2886462503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886462503</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2736-2f9c87247fbdfe2d67f11364838e208ebbbc40003b38000658280f9c9e08bd633</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxS0EEqWwMltiDvhPYrtjG7W0UkUGYGGxnMamqVK72KkgGyMj4iP2k-BS1OV-96R3d7oHwDVGtxghcqdsrW8JIhRjLtgJ6OGM4IRyTk9jn1KacJHhc3ARwir6hUCsB5pc-dLZ3ef3SAVdwXGjF613Fo62xmgP56qLNeoXW3zsvn4mOsvJH2mRwpFzoQ1w3C6VdQ187Gy71KEO0Hi3hnlB4LSrvHvVVrW1s5fgzKgm6Kt_9sHzZPyUT5N5cT_Lh_NkQzhlCTGDheAk5aasjCYV4wZjylJBhSZI6LIsFylCiJZURLBMEIHizEAjUVaM0j64OezdePe21aGVK7f1Np6U8W2WMpKhvWtwcL3Xje7kxtdr5TuJkdzHKfdxymOccvgwGx8V_QUjdGzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886462503</pqid></control><display><type>article</type><title>Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yang ; Wang, Wenhang ; He, Ruosong ; Li, Meng ; Zhang, Jinqiang ; Cao, Fengliang ; Liu, Jianxin ; Lin, Shiyuan ; Gao, Xinhua ; Yang, Guohui ; Wang, Mingqing ; Xing, Tao ; Liu, Tao ; Liu, Qiang ; Hu, Han ; Tsubaki, Noritatsu ; Wu, Mingbo</creator><creatorcontrib>Wang, Yang ; Wang, Wenhang ; He, Ruosong ; Li, Meng ; Zhang, Jinqiang ; Cao, Fengliang ; Liu, Jianxin ; Lin, Shiyuan ; Gao, Xinhua ; Yang, Guohui ; Wang, Mingqing ; Xing, Tao ; Liu, Tao ; Liu, Qiang ; Hu, Han ; Tsubaki, Noritatsu ; Wu, Mingbo</creatorcontrib><description>The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron‐transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron‐transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co‐feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis. A carbon‐based electron buffer layer was employed to neutralize the excessive electrons transferred from ZnOx to Fe species. A suitable CO adsorption strength and C−C coupling barrier was achieved as a consequence of the Fe‐based active sites, yielding a high ethanol yield of 366.6 gEtOH kgcat−1 h−1 from CO2+H2. The result differs from the common ZnFe bimetallic catalyst for which hydrocarbons dominate.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202311786</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Buffer layers ; Carbon dioxide ; Catalysts ; Chemical synthesis ; CO2 Conversion ; Electron Buffer Layer ; Ethanol ; Fe-Based Catalyst ; Hydrogenation ; Intermediates ; Iron oxides</subject><ispartof>Angewandte Chemie International Edition, 2023-11, Vol.62 (46), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0048-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202311786$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202311786$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Wang, Wenhang</creatorcontrib><creatorcontrib>He, Ruosong</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Zhang, Jinqiang</creatorcontrib><creatorcontrib>Cao, Fengliang</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Lin, Shiyuan</creatorcontrib><creatorcontrib>Gao, Xinhua</creatorcontrib><creatorcontrib>Yang, Guohui</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><title>Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation</title><title>Angewandte Chemie International Edition</title><description>The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron‐transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron‐transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co‐feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis. A carbon‐based electron buffer layer was employed to neutralize the excessive electrons transferred from ZnOx to Fe species. A suitable CO adsorption strength and C−C coupling barrier was achieved as a consequence of the Fe‐based active sites, yielding a high ethanol yield of 366.6 gEtOH kgcat−1 h−1 from CO2+H2. The result differs from the common ZnFe bimetallic catalyst for which hydrocarbons dominate.</description><subject>Adsorption</subject><subject>Buffer layers</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>CO2 Conversion</subject><subject>Electron Buffer Layer</subject><subject>Ethanol</subject><subject>Fe-Based Catalyst</subject><subject>Hydrogenation</subject><subject>Intermediates</subject><subject>Iron oxides</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAQxS0EEqWwMltiDvhPYrtjG7W0UkUGYGGxnMamqVK72KkgGyMj4iP2k-BS1OV-96R3d7oHwDVGtxghcqdsrW8JIhRjLtgJ6OGM4IRyTk9jn1KacJHhc3ARwir6hUCsB5pc-dLZ3ef3SAVdwXGjF613Fo62xmgP56qLNeoXW3zsvn4mOsvJH2mRwpFzoQ1w3C6VdQ187Gy71KEO0Hi3hnlB4LSrvHvVVrW1s5fgzKgm6Kt_9sHzZPyUT5N5cT_Lh_NkQzhlCTGDheAk5aasjCYV4wZjylJBhSZI6LIsFylCiJZURLBMEIHizEAjUVaM0j64OezdePe21aGVK7f1Np6U8W2WMpKhvWtwcL3Xje7kxtdr5TuJkdzHKfdxymOccvgwGx8V_QUjdGzI</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Wang, Yang</creator><creator>Wang, Wenhang</creator><creator>He, Ruosong</creator><creator>Li, Meng</creator><creator>Zhang, Jinqiang</creator><creator>Cao, Fengliang</creator><creator>Liu, Jianxin</creator><creator>Lin, Shiyuan</creator><creator>Gao, Xinhua</creator><creator>Yang, Guohui</creator><creator>Wang, Mingqing</creator><creator>Xing, Tao</creator><creator>Liu, Tao</creator><creator>Liu, Qiang</creator><creator>Hu, Han</creator><creator>Tsubaki, Noritatsu</creator><creator>Wu, Mingbo</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-0048-778X</orcidid></search><sort><creationdate>20231113</creationdate><title>Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation</title><author>Wang, Yang ; Wang, Wenhang ; He, Ruosong ; Li, Meng ; Zhang, Jinqiang ; Cao, Fengliang ; Liu, Jianxin ; Lin, Shiyuan ; Gao, Xinhua ; Yang, Guohui ; Wang, Mingqing ; Xing, Tao ; Liu, Tao ; Liu, Qiang ; Hu, Han ; Tsubaki, Noritatsu ; Wu, Mingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2736-2f9c87247fbdfe2d67f11364838e208ebbbc40003b38000658280f9c9e08bd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Buffer layers</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>CO2 Conversion</topic><topic>Electron Buffer Layer</topic><topic>Ethanol</topic><topic>Fe-Based Catalyst</topic><topic>Hydrogenation</topic><topic>Intermediates</topic><topic>Iron oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Wang, Wenhang</creatorcontrib><creatorcontrib>He, Ruosong</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Zhang, Jinqiang</creatorcontrib><creatorcontrib>Cao, Fengliang</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Lin, Shiyuan</creatorcontrib><creatorcontrib>Gao, Xinhua</creatorcontrib><creatorcontrib>Yang, Guohui</creatorcontrib><creatorcontrib>Wang, Mingqing</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yang</au><au>Wang, Wenhang</au><au>He, Ruosong</au><au>Li, Meng</au><au>Zhang, Jinqiang</au><au>Cao, Fengliang</au><au>Liu, Jianxin</au><au>Lin, Shiyuan</au><au>Gao, Xinhua</au><au>Yang, Guohui</au><au>Wang, Mingqing</au><au>Xing, Tao</au><au>Liu, Tao</au><au>Liu, Qiang</au><au>Hu, Han</au><au>Tsubaki, Noritatsu</au><au>Wu, Mingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>62</volume><issue>46</issue><epage>n/a</epage><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron‐transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron‐transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co‐feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis. A carbon‐based electron buffer layer was employed to neutralize the excessive electrons transferred from ZnOx to Fe species. A suitable CO adsorption strength and C−C coupling barrier was achieved as a consequence of the Fe‐based active sites, yielding a high ethanol yield of 366.6 gEtOH kgcat−1 h−1 from CO2+H2. The result differs from the common ZnFe bimetallic catalyst for which hydrocarbons dominate.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202311786</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0048-778X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-11, Vol.62 (46), p.n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2886462503
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Buffer layers
Carbon dioxide
Catalysts
Chemical synthesis
CO2 Conversion
Electron Buffer Layer
Ethanol
Fe-Based Catalyst
Hydrogenation
Intermediates
Iron oxides
title Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%E2%80%90Based%20Electron%20Buffer%20Layer%20on%20ZnOx%E2%88%92Fe5C2%E2%88%92Fe3O4%20Boosts%20Ethanol%20Synthesis%20from%20CO2%20Hydrogenation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Yang&rft.date=2023-11-13&rft.volume=62&rft.issue=46&rft.epage=n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202311786&rft_dat=%3Cproquest_wiley%3E2886462503%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886462503&rft_id=info:pmid/&rfr_iscdi=true