Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis
The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986–2022 with a total sample of 709 values of quantitative metrics. The pa...
Gespeichert in:
Veröffentlicht in: | Eurasian soil science 2023-11, Vol.56 (11), p.1605-1617 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1617 |
---|---|
container_issue | 11 |
container_start_page | 1605 |
container_title | Eurasian soil science |
container_volume | 56 |
creator | Chinilin, A. V. Vindeker, G. V. Savin, I. Yu |
description | The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986–2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination “Vis-NIR spectroscopy AND soil organic carbon”. The meta-analysis using the nonparametric one-sided Kruskal–Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (
R
2
cv/val
), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared. |
doi_str_mv | 10.1134/S1064229323601841 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2886368207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771714915</galeid><sourcerecordid>A771714915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1bed5bd3e7ada9156b9fde87858886ad9b40fa5fac7114dec5a8beb69b7a23f73</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxosoOKd_gLeA586kaZrUWxnqBurAqXgrSfoyMrqmJt1h_70ZFTyIvMN7vPf9Hh9fklwTPCOE5rdrgos8y0qa0QITkZOTZEIYK1JSss_TOMdzeryfJxchbDGmQuRikiw-bEhflq9o3YMevAva9QdknEdrZ1u08hvZWY3m0ivXoSoECGEH3XCHKvQMg0yrTraHYMNlcmZkG-Dqp0-T94f7t_kifVo9LufVU6ppKYaUKGiYaihw2ciSsEKVpgHBBRNCFLIpVY6NZEZqTkjegGZSKFBFqbjMqOF0mtyMf3vvvvYQhnrr9j6aCHUWP9BCZPiomo2qjWyhtp1xg5c6VgM7q10HxsZ9xTnhJI82IkBGQMcMggdT997upD_UBNfHhOs_CUcmG5kQtd0G_K-V_6Fvn9R8WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886368207</pqid></control><display><type>article</type><title>Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis</title><source>SpringerLink Journals</source><creator>Chinilin, A. V. ; Vindeker, G. V. ; Savin, I. Yu</creator><creatorcontrib>Chinilin, A. V. ; Vindeker, G. V. ; Savin, I. Yu</creatorcontrib><description>The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986–2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination “Vis-NIR spectroscopy AND soil organic carbon”. The meta-analysis using the nonparametric one-sided Kruskal–Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (
R
2
cv/val
), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.</description><identifier>ISSN: 1064-2293</identifier><identifier>EISSN: 1556-195X</identifier><identifier>DOI: 10.1134/S1064229323601841</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Analytical methods ; Carbon ; Carbon content ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Infrared spectroscopy ; Meta-analysis ; Organic carbon ; Organic soils ; Root-mean-square errors ; Scientific papers ; Soil ; Soil Chemistry ; Soils ; Spectroscopy ; Spectrum analysis ; Statistical analysis ; Variance analysis</subject><ispartof>Eurasian soil science, 2023-11, Vol.56 (11), p.1605-1617</ispartof><rights>The Author(s) 2023. ISSN 1064-2293, Eurasian Soil Science, 2023, Vol. 56, No. 11, pp. 1605–1617. © The Author(s), 2023. This article is an open access publication. Russian Text © The Author(s), 2023, published in Pochvovedenie, 2023, No. 11, pp. 1357–1370.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. ISSN 1064-2293, Eurasian Soil Science, 2023, Vol. 56, No. 11, pp. 1605–1617. © The Author(s), 2023. This article is an open access publication. Russian Text © The Author(s), 2023, published in Pochvovedenie, 2023, No. 11, pp. 1357–1370. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-1bed5bd3e7ada9156b9fde87858886ad9b40fa5fac7114dec5a8beb69b7a23f73</citedby><cites>FETCH-LOGICAL-c398t-1bed5bd3e7ada9156b9fde87858886ad9b40fa5fac7114dec5a8beb69b7a23f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064229323601841$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064229323601841$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chinilin, A. V.</creatorcontrib><creatorcontrib>Vindeker, G. V.</creatorcontrib><creatorcontrib>Savin, I. Yu</creatorcontrib><title>Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis</title><title>Eurasian soil science</title><addtitle>Eurasian Soil Sc</addtitle><description>The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986–2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination “Vis-NIR spectroscopy AND soil organic carbon”. The meta-analysis using the nonparametric one-sided Kruskal–Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (
R
2
cv/val
), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.</description><subject>Analysis</subject><subject>Analytical methods</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Infrared spectroscopy</subject><subject>Meta-analysis</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Root-mean-square errors</subject><subject>Scientific papers</subject><subject>Soil</subject><subject>Soil Chemistry</subject><subject>Soils</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Variance analysis</subject><issn>1064-2293</issn><issn>1556-195X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kMFLwzAUxosoOKd_gLeA586kaZrUWxnqBurAqXgrSfoyMrqmJt1h_70ZFTyIvMN7vPf9Hh9fklwTPCOE5rdrgos8y0qa0QITkZOTZEIYK1JSss_TOMdzeryfJxchbDGmQuRikiw-bEhflq9o3YMevAva9QdknEdrZ1u08hvZWY3m0ivXoSoECGEH3XCHKvQMg0yrTraHYMNlcmZkG-Dqp0-T94f7t_kifVo9LufVU6ppKYaUKGiYaihw2ciSsEKVpgHBBRNCFLIpVY6NZEZqTkjegGZSKFBFqbjMqOF0mtyMf3vvvvYQhnrr9j6aCHUWP9BCZPiomo2qjWyhtp1xg5c6VgM7q10HxsZ9xTnhJI82IkBGQMcMggdT997upD_UBNfHhOs_CUcmG5kQtd0G_K-V_6Fvn9R8WA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Chinilin, A. V.</creator><creator>Vindeker, G. V.</creator><creator>Savin, I. Yu</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20231101</creationdate><title>Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis</title><author>Chinilin, A. V. ; Vindeker, G. V. ; Savin, I. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1bed5bd3e7ada9156b9fde87858886ad9b40fa5fac7114dec5a8beb69b7a23f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Analytical methods</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Infrared spectroscopy</topic><topic>Meta-analysis</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Root-mean-square errors</topic><topic>Scientific papers</topic><topic>Soil</topic><topic>Soil Chemistry</topic><topic>Soils</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chinilin, A. V.</creatorcontrib><creatorcontrib>Vindeker, G. V.</creatorcontrib><creatorcontrib>Savin, I. Yu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Eurasian soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chinilin, A. V.</au><au>Vindeker, G. V.</au><au>Savin, I. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis</atitle><jtitle>Eurasian soil science</jtitle><stitle>Eurasian Soil Sc</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>56</volume><issue>11</issue><spage>1605</spage><epage>1617</epage><pages>1605-1617</pages><issn>1064-2293</issn><eissn>1556-195X</eissn><abstract>The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986–2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination “Vis-NIR spectroscopy AND soil organic carbon”. The meta-analysis using the nonparametric one-sided Kruskal–Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (
R
2
cv/val
), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064229323601841</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2293 |
ispartof | Eurasian soil science, 2023-11, Vol.56 (11), p.1605-1617 |
issn | 1064-2293 1556-195X |
language | eng |
recordid | cdi_proquest_journals_2886368207 |
source | SpringerLink Journals |
subjects | Analysis Analytical methods Carbon Carbon content Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Infrared spectroscopy Meta-analysis Organic carbon Organic soils Root-mean-square errors Scientific papers Soil Soil Chemistry Soils Spectroscopy Spectrum analysis Statistical analysis Variance analysis |
title | Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vis-NIR%20Spectroscopy%20for%20Soil%20Organic%20Carbon%20Assessment:%20A%20Meta-Analysis&rft.jtitle=Eurasian%20soil%20science&rft.au=Chinilin,%20A.%20V.&rft.date=2023-11-01&rft.volume=56&rft.issue=11&rft.spage=1605&rft.epage=1617&rft.pages=1605-1617&rft.issn=1064-2293&rft.eissn=1556-195X&rft_id=info:doi/10.1134/S1064229323601841&rft_dat=%3Cgale_proqu%3EA771714915%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886368207&rft_id=info:pmid/&rft_galeid=A771714915&rfr_iscdi=true |