Analysis of spatially coherent forecast error structures

Understanding error properties is an essential part in numerical weather prediction. Predictable relationship between errors of different regions due to some underlying systematic or random process can give rise to correlated errors. Estimation of error correlation is crucial for improvement of fore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2023-10, Vol.149 (756), p.2881-2894
Hauptverfasser: Gupta, Shraddha, Banerjee, Abhirup, Marwan, Norbert, Richardson, David, Magnusson, Linus, Kurths, Jürgen, Pappenberger, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2894
container_issue 756
container_start_page 2881
container_title Quarterly journal of the Royal Meteorological Society
container_volume 149
creator Gupta, Shraddha
Banerjee, Abhirup
Marwan, Norbert
Richardson, David
Magnusson, Linus
Kurths, Jürgen
Pappenberger, Florian
description Understanding error properties is an essential part in numerical weather prediction. Predictable relationship between errors of different regions due to some underlying systematic or random process can give rise to correlated errors. Estimation of error correlation is crucial for improvement of forecasts. However, the size of the corresponding correlation matrix is larger than what is possible to represent on geographical maps in order to diagnose its full spatial variation. Here, we propose a complex network‐based approach to analyse forecast error correlations that enables us to estimate the spatially varying component of the error. A quantitative study of the spatio‐temporal coherent structures of medium‐range forecast errors of different climate variables using network measures can reveal common sources of errors. Such information is crucial, especially in cases such as the outgoing long‐wave radiation, in which errors are correlated across very long distances, indicating an underlying climate mechanism as the source of the error. We show that the spatial patterns of forecast error co‐variability may not be the same as that of the corresponding climate variable itself, thereby implying that the mechanisms behind the correlated errors may be different from the climate processes responsible for the spatio‐temporal interactions of the climate variable. Our results highlight the importance of diagnosing the full spatial variation of error correlations to understand the origin and propagation of forecast errors, and demonstrate complex networks to be a promising diagnostic tool in this regard.
doi_str_mv 10.1002/qj.4536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886344234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886344234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-399431f901e7da280b14f7b1580b7620347a1c8fe41f02f162c104063a7347b43</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxBdRMFbxKwQ8eEp9-yfZzbEUrULBi4K3ZbvuYkLsNu9tDv32ptTTDMyPYRjG7jksOYB4GvulqmVzwQqutK6Mhq9LVgDIumoB2mt2Q9QDQK2FLphZ7d1wpI7KFEs6uNy5YTiWPv0EDPtcxoTBO8plQExYUsbJ5wkD3bKr6AYKd_-6YJ8vzx_r12r7vnlbr7aVF8rkSratkjy2wIP-dsLAjquod7yenW4ESKUd9yYGxSOIyBvhOShopNNztFNywR7OvQdM4xQo2z5NOI8mK4xppFJCnqjHM-UxEWGI9oDdr8Oj5WBPt9ixt6db5B96mVNC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886344234</pqid></control><display><type>article</type><title>Analysis of spatially coherent forecast error structures</title><source>Access via Wiley Online Library</source><creator>Gupta, Shraddha ; Banerjee, Abhirup ; Marwan, Norbert ; Richardson, David ; Magnusson, Linus ; Kurths, Jürgen ; Pappenberger, Florian</creator><creatorcontrib>Gupta, Shraddha ; Banerjee, Abhirup ; Marwan, Norbert ; Richardson, David ; Magnusson, Linus ; Kurths, Jürgen ; Pappenberger, Florian</creatorcontrib><description>Understanding error properties is an essential part in numerical weather prediction. Predictable relationship between errors of different regions due to some underlying systematic or random process can give rise to correlated errors. Estimation of error correlation is crucial for improvement of forecasts. However, the size of the corresponding correlation matrix is larger than what is possible to represent on geographical maps in order to diagnose its full spatial variation. Here, we propose a complex network‐based approach to analyse forecast error correlations that enables us to estimate the spatially varying component of the error. A quantitative study of the spatio‐temporal coherent structures of medium‐range forecast errors of different climate variables using network measures can reveal common sources of errors. Such information is crucial, especially in cases such as the outgoing long‐wave radiation, in which errors are correlated across very long distances, indicating an underlying climate mechanism as the source of the error. We show that the spatial patterns of forecast error co‐variability may not be the same as that of the corresponding climate variable itself, thereby implying that the mechanisms behind the correlated errors may be different from the climate processes responsible for the spatio‐temporal interactions of the climate variable. Our results highlight the importance of diagnosing the full spatial variation of error correlations to understand the origin and propagation of forecast errors, and demonstrate complex networks to be a promising diagnostic tool in this regard.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.4536</identifier><language>eng</language><publisher>Reading: Wiley Subscription Services, Inc</publisher><subject>Climate ; Climate change ; Correlation ; Forecast errors ; Forecast improvement ; Quantitative research ; Spatial variations ; Weather forecasting</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2023-10, Vol.149 (756), p.2881-2894</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-399431f901e7da280b14f7b1580b7620347a1c8fe41f02f162c104063a7347b43</cites><orcidid>0000-0003-4158-9870 ; 0000-0002-5182-7898 ; 0000-0003-4707-2231 ; 0000-0002-5926-4276 ; 0000-0003-1437-7039 ; 0000-0003-1766-2898 ; 0000-0002-7101-0914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gupta, Shraddha</creatorcontrib><creatorcontrib>Banerjee, Abhirup</creatorcontrib><creatorcontrib>Marwan, Norbert</creatorcontrib><creatorcontrib>Richardson, David</creatorcontrib><creatorcontrib>Magnusson, Linus</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Pappenberger, Florian</creatorcontrib><title>Analysis of spatially coherent forecast error structures</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Understanding error properties is an essential part in numerical weather prediction. Predictable relationship between errors of different regions due to some underlying systematic or random process can give rise to correlated errors. Estimation of error correlation is crucial for improvement of forecasts. However, the size of the corresponding correlation matrix is larger than what is possible to represent on geographical maps in order to diagnose its full spatial variation. Here, we propose a complex network‐based approach to analyse forecast error correlations that enables us to estimate the spatially varying component of the error. A quantitative study of the spatio‐temporal coherent structures of medium‐range forecast errors of different climate variables using network measures can reveal common sources of errors. Such information is crucial, especially in cases such as the outgoing long‐wave radiation, in which errors are correlated across very long distances, indicating an underlying climate mechanism as the source of the error. We show that the spatial patterns of forecast error co‐variability may not be the same as that of the corresponding climate variable itself, thereby implying that the mechanisms behind the correlated errors may be different from the climate processes responsible for the spatio‐temporal interactions of the climate variable. Our results highlight the importance of diagnosing the full spatial variation of error correlations to understand the origin and propagation of forecast errors, and demonstrate complex networks to be a promising diagnostic tool in this regard.</description><subject>Climate</subject><subject>Climate change</subject><subject>Correlation</subject><subject>Forecast errors</subject><subject>Forecast improvement</subject><subject>Quantitative research</subject><subject>Spatial variations</subject><subject>Weather forecasting</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE9Lw0AUxBdRMFbxKwQ8eEp9-yfZzbEUrULBi4K3ZbvuYkLsNu9tDv32ptTTDMyPYRjG7jksOYB4GvulqmVzwQqutK6Mhq9LVgDIumoB2mt2Q9QDQK2FLphZ7d1wpI7KFEs6uNy5YTiWPv0EDPtcxoTBO8plQExYUsbJ5wkD3bKr6AYKd_-6YJ8vzx_r12r7vnlbr7aVF8rkSratkjy2wIP-dsLAjquod7yenW4ESKUd9yYGxSOIyBvhOShopNNztFNywR7OvQdM4xQo2z5NOI8mK4xppFJCnqjHM-UxEWGI9oDdr8Oj5WBPt9ixt6db5B96mVNC</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Gupta, Shraddha</creator><creator>Banerjee, Abhirup</creator><creator>Marwan, Norbert</creator><creator>Richardson, David</creator><creator>Magnusson, Linus</creator><creator>Kurths, Jürgen</creator><creator>Pappenberger, Florian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4158-9870</orcidid><orcidid>https://orcid.org/0000-0002-5182-7898</orcidid><orcidid>https://orcid.org/0000-0003-4707-2231</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0003-1437-7039</orcidid><orcidid>https://orcid.org/0000-0003-1766-2898</orcidid><orcidid>https://orcid.org/0000-0002-7101-0914</orcidid></search><sort><creationdate>202310</creationdate><title>Analysis of spatially coherent forecast error structures</title><author>Gupta, Shraddha ; Banerjee, Abhirup ; Marwan, Norbert ; Richardson, David ; Magnusson, Linus ; Kurths, Jürgen ; Pappenberger, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-399431f901e7da280b14f7b1580b7620347a1c8fe41f02f162c104063a7347b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Correlation</topic><topic>Forecast errors</topic><topic>Forecast improvement</topic><topic>Quantitative research</topic><topic>Spatial variations</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Shraddha</creatorcontrib><creatorcontrib>Banerjee, Abhirup</creatorcontrib><creatorcontrib>Marwan, Norbert</creatorcontrib><creatorcontrib>Richardson, David</creatorcontrib><creatorcontrib>Magnusson, Linus</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Pappenberger, Florian</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Shraddha</au><au>Banerjee, Abhirup</au><au>Marwan, Norbert</au><au>Richardson, David</au><au>Magnusson, Linus</au><au>Kurths, Jürgen</au><au>Pappenberger, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of spatially coherent forecast error structures</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2023-10</date><risdate>2023</risdate><volume>149</volume><issue>756</issue><spage>2881</spage><epage>2894</epage><pages>2881-2894</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>Understanding error properties is an essential part in numerical weather prediction. Predictable relationship between errors of different regions due to some underlying systematic or random process can give rise to correlated errors. Estimation of error correlation is crucial for improvement of forecasts. However, the size of the corresponding correlation matrix is larger than what is possible to represent on geographical maps in order to diagnose its full spatial variation. Here, we propose a complex network‐based approach to analyse forecast error correlations that enables us to estimate the spatially varying component of the error. A quantitative study of the spatio‐temporal coherent structures of medium‐range forecast errors of different climate variables using network measures can reveal common sources of errors. Such information is crucial, especially in cases such as the outgoing long‐wave radiation, in which errors are correlated across very long distances, indicating an underlying climate mechanism as the source of the error. We show that the spatial patterns of forecast error co‐variability may not be the same as that of the corresponding climate variable itself, thereby implying that the mechanisms behind the correlated errors may be different from the climate processes responsible for the spatio‐temporal interactions of the climate variable. Our results highlight the importance of diagnosing the full spatial variation of error correlations to understand the origin and propagation of forecast errors, and demonstrate complex networks to be a promising diagnostic tool in this regard.</abstract><cop>Reading</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qj.4536</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4158-9870</orcidid><orcidid>https://orcid.org/0000-0002-5182-7898</orcidid><orcidid>https://orcid.org/0000-0003-4707-2231</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0003-1437-7039</orcidid><orcidid>https://orcid.org/0000-0003-1766-2898</orcidid><orcidid>https://orcid.org/0000-0002-7101-0914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2023-10, Vol.149 (756), p.2881-2894
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_journals_2886344234
source Access via Wiley Online Library
subjects Climate
Climate change
Correlation
Forecast errors
Forecast improvement
Quantitative research
Spatial variations
Weather forecasting
title Analysis of spatially coherent forecast error structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20spatially%20coherent%20forecast%20error%20structures&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Gupta,%20Shraddha&rft.date=2023-10&rft.volume=149&rft.issue=756&rft.spage=2881&rft.epage=2894&rft.pages=2881-2894&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.4536&rft_dat=%3Cproquest_cross%3E2886344234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886344234&rft_id=info:pmid/&rfr_iscdi=true