Degeneration of the spectral gap with negative Robin parameter
The spectral gap of the Neumann and Dirichlet Laplacians are each known to have a sharp positive lower bound among convex domains of a given diameter. Between these cases, for each positive value of the Robin parameter, an analogous sharp lower bound on the spectral gap is conjectured. In this paper...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-11, Vol.296 (11), p.5305-5321 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5321 |
---|---|
container_issue | 11 |
container_start_page | 5305 |
container_title | Mathematische Nachrichten |
container_volume | 296 |
creator | Kielty, Derek |
description | The spectral gap of the Neumann and Dirichlet Laplacians are each known to have a sharp positive lower bound among convex domains of a given diameter. Between these cases, for each positive value of the Robin parameter, an analogous sharp lower bound on the spectral gap is conjectured. In this paper, we show that the extension of this conjecture to negative Robin parameters fails by proving that the spectral gap of double cone domains are exponentially small, for each fixed parameter value. |
doi_str_mv | 10.1002/mana.202200121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886150819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886150819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-4da9b108d7832736ff80febd45cce7f7791bafa644d3f9bbaa03641aa5a63ed93</originalsourceid><addsrcrecordid>eNo90M9LwzAYxvEgCs7p1XPAc-ubpE3SiyDzJwwEUfAW3rZvto6trUmm-N-7MfH0Xj68D3wZuxSQCwB5vcEecwlSAggpjthElFJmUgt9zCY7UGalLT5O2VmMKwCoKqMn7OaOFtRTwNQNPR88T0vicaQmBVzzBY78u0tL3tNiJ76Ivw511_MRA24oUThnJx7XkS7-7pS9P9y_zZ6y-cvj8-x2njVSm5QVLVa1ANsaq6RR2nsLnuq2KJuGjDemEjV61EXRKl_VNSIoXQjEErWitlJTdnX4O4bhc0sxudWwDf1u0klrtSjBir3KD6oJQ4yBvBtDt8Hw4wS4fSO3b-T-G6lfrntabA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886150819</pqid></control><display><type>article</type><title>Degeneration of the spectral gap with negative Robin parameter</title><source>Wiley Online Library All Journals</source><creator>Kielty, Derek</creator><creatorcontrib>Kielty, Derek</creatorcontrib><description>The spectral gap of the Neumann and Dirichlet Laplacians are each known to have a sharp positive lower bound among convex domains of a given diameter. Between these cases, for each positive value of the Robin parameter, an analogous sharp lower bound on the spectral gap is conjectured. In this paper, we show that the extension of this conjecture to negative Robin parameters fails by proving that the spectral gap of double cone domains are exponentially small, for each fixed parameter value.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202200121</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Degeneration ; Dirichlet problem ; Lower bounds ; Parameters</subject><ispartof>Mathematische Nachrichten, 2023-11, Vol.296 (11), p.5305-5321</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-4da9b108d7832736ff80febd45cce7f7791bafa644d3f9bbaa03641aa5a63ed93</citedby><cites>FETCH-LOGICAL-c267t-4da9b108d7832736ff80febd45cce7f7791bafa644d3f9bbaa03641aa5a63ed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kielty, Derek</creatorcontrib><title>Degeneration of the spectral gap with negative Robin parameter</title><title>Mathematische Nachrichten</title><description>The spectral gap of the Neumann and Dirichlet Laplacians are each known to have a sharp positive lower bound among convex domains of a given diameter. Between these cases, for each positive value of the Robin parameter, an analogous sharp lower bound on the spectral gap is conjectured. In this paper, we show that the extension of this conjecture to negative Robin parameters fails by proving that the spectral gap of double cone domains are exponentially small, for each fixed parameter value.</description><subject>Degeneration</subject><subject>Dirichlet problem</subject><subject>Lower bounds</subject><subject>Parameters</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAYxvEgCs7p1XPAc-ubpE3SiyDzJwwEUfAW3rZvto6trUmm-N-7MfH0Xj68D3wZuxSQCwB5vcEecwlSAggpjthElFJmUgt9zCY7UGalLT5O2VmMKwCoKqMn7OaOFtRTwNQNPR88T0vicaQmBVzzBY78u0tL3tNiJ76Ivw511_MRA24oUThnJx7XkS7-7pS9P9y_zZ6y-cvj8-x2njVSm5QVLVa1ANsaq6RR2nsLnuq2KJuGjDemEjV61EXRKl_VNSIoXQjEErWitlJTdnX4O4bhc0sxudWwDf1u0klrtSjBir3KD6oJQ4yBvBtDt8Hw4wS4fSO3b-T-G6lfrntabA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Kielty, Derek</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202311</creationdate><title>Degeneration of the spectral gap with negative Robin parameter</title><author>Kielty, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-4da9b108d7832736ff80febd45cce7f7791bafa644d3f9bbaa03641aa5a63ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Degeneration</topic><topic>Dirichlet problem</topic><topic>Lower bounds</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kielty, Derek</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kielty, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degeneration of the spectral gap with negative Robin parameter</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2023-11</date><risdate>2023</risdate><volume>296</volume><issue>11</issue><spage>5305</spage><epage>5321</epage><pages>5305-5321</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>The spectral gap of the Neumann and Dirichlet Laplacians are each known to have a sharp positive lower bound among convex domains of a given diameter. Between these cases, for each positive value of the Robin parameter, an analogous sharp lower bound on the spectral gap is conjectured. In this paper, we show that the extension of this conjecture to negative Robin parameters fails by proving that the spectral gap of double cone domains are exponentially small, for each fixed parameter value.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202200121</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2023-11, Vol.296 (11), p.5305-5321 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2886150819 |
source | Wiley Online Library All Journals |
subjects | Degeneration Dirichlet problem Lower bounds Parameters |
title | Degeneration of the spectral gap with negative Robin parameter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degeneration%20of%20the%20spectral%20gap%20with%20negative%20Robin%20parameter&rft.jtitle=Mathematische%20Nachrichten&rft.au=Kielty,%20Derek&rft.date=2023-11&rft.volume=296&rft.issue=11&rft.spage=5305&rft.epage=5321&rft.pages=5305-5321&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202200121&rft_dat=%3Cproquest_cross%3E2886150819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886150819&rft_id=info:pmid/&rfr_iscdi=true |