Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion

In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and industrial mathematics 2023-09, Vol.17 (3), p.616-627
1. Verfasser: Shubina, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue 3
container_start_page 616
container_title Journal of applied and industrial mathematics
container_volume 17
creator Shubina, M. V.
description In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.
doi_str_mv 10.1134/S1990478923030158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886070077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886070077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-5d37d2a9ec90c95518858d26511d64badab2bfdfc9e78c8e3f968c0041d437503</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwHXozfJ5LWUWrWodNGKyyGTZMrINKlJW_TvnVrRhbi6h_PichA6J3BJCCuv5kRrKKXSlAEDwtURGuypopRaHv9gpU_RKOe2BkaoYELQAXqYvBu7wYtkdr5rwxK_9ADPY7fdtDFkHBs8C764aVc-5J4xHX6KzndfytgE6xOehp3Za2fopDFd9qPvO0TPt5PF-L54nN1Nx9ePhSWKqYI7Jh012lsNVnNOlOLKUcEJcaKsjTM1rRvXWO2lssqzRgtlAUriSiY5sCG6OPSuU3zb-rypXuM29a_liiolQAJI2bvIwWVTzDn5plqndmXSR0Wg2s9W_Zmtz9BDJvfesPTpt_n_0CesKG17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886070077</pqid></control><display><type>article</type><title>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</title><source>SpringerLink (Online service)</source><creator>Shubina, M. V.</creator><creatorcontrib>Shubina, M. V.</creatorcontrib><description>In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478923030158</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cancer ; Exact solutions ; Mathematical models ; Mathematics ; Mathematics and Statistics ; One dimensional models ; Partial differential equations ; Traveling waves</subject><ispartof>Journal of applied and industrial mathematics, 2023-09, Vol.17 (3), p.616-627</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1838-5d37d2a9ec90c95518858d26511d64badab2bfdfc9e78c8e3f968c0041d437503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478923030158$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478923030158$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shubina, M. V.</creatorcontrib><title>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.</description><subject>Cancer</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>One dimensional models</subject><subject>Partial differential equations</subject><subject>Traveling waves</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgqf0AdwHXozfJ5LWUWrWodNGKyyGTZMrINKlJW_TvnVrRhbi6h_PichA6J3BJCCuv5kRrKKXSlAEDwtURGuypopRaHv9gpU_RKOe2BkaoYELQAXqYvBu7wYtkdr5rwxK_9ADPY7fdtDFkHBs8C764aVc-5J4xHX6KzndfytgE6xOehp3Za2fopDFd9qPvO0TPt5PF-L54nN1Nx9ePhSWKqYI7Jh012lsNVnNOlOLKUcEJcaKsjTM1rRvXWO2lssqzRgtlAUriSiY5sCG6OPSuU3zb-rypXuM29a_liiolQAJI2bvIwWVTzDn5plqndmXSR0Wg2s9W_Zmtz9BDJvfesPTpt_n_0CesKG17</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Shubina, M. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20230901</creationdate><title>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</title><author>Shubina, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-5d37d2a9ec90c95518858d26511d64badab2bfdfc9e78c8e3f968c0041d437503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>One dimensional models</topic><topic>Partial differential equations</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shubina, M. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubina, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><spage>616</spage><epage>627</epage><pages>616-627</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478923030158</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2023-09, Vol.17 (3), p.616-627
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_journals_2886070077
source SpringerLink (Online service)
subjects Cancer
Exact solutions
Mathematical models
Mathematics
Mathematics and Statistics
One dimensional models
Partial differential equations
Traveling waves
title Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Traveling%20Wave%20Solutions%20of%20One-Dimensional%20Models%20of%20Cancer%20Invasion&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Shubina,%20M.%20V.&rft.date=2023-09-01&rft.volume=17&rft.issue=3&rft.spage=616&rft.epage=627&rft.pages=616-627&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478923030158&rft_dat=%3Cproquest_cross%3E2886070077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886070077&rft_id=info:pmid/&rfr_iscdi=true