Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion
In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partia...
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2023-09, Vol.17 (3), p.616-627 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | 3 |
container_start_page | 616 |
container_title | Journal of applied and industrial mathematics |
container_volume | 17 |
creator | Shubina, M. V. |
description | In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters. |
doi_str_mv | 10.1134/S1990478923030158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2886070077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886070077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-5d37d2a9ec90c95518858d26511d64badab2bfdfc9e78c8e3f968c0041d437503</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwHXozfJ5LWUWrWodNGKyyGTZMrINKlJW_TvnVrRhbi6h_PichA6J3BJCCuv5kRrKKXSlAEDwtURGuypopRaHv9gpU_RKOe2BkaoYELQAXqYvBu7wYtkdr5rwxK_9ADPY7fdtDFkHBs8C764aVc-5J4xHX6KzndfytgE6xOehp3Za2fopDFd9qPvO0TPt5PF-L54nN1Nx9ePhSWKqYI7Jh012lsNVnNOlOLKUcEJcaKsjTM1rRvXWO2lssqzRgtlAUriSiY5sCG6OPSuU3zb-rypXuM29a_liiolQAJI2bvIwWVTzDn5plqndmXSR0Wg2s9W_Zmtz9BDJvfesPTpt_n_0CesKG17</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886070077</pqid></control><display><type>article</type><title>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</title><source>SpringerLink (Online service)</source><creator>Shubina, M. V.</creator><creatorcontrib>Shubina, M. V.</creatorcontrib><description>In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478923030158</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cancer ; Exact solutions ; Mathematical models ; Mathematics ; Mathematics and Statistics ; One dimensional models ; Partial differential equations ; Traveling waves</subject><ispartof>Journal of applied and industrial mathematics, 2023-09, Vol.17 (3), p.616-627</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1838-5d37d2a9ec90c95518858d26511d64badab2bfdfc9e78c8e3f968c0041d437503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478923030158$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478923030158$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shubina, M. V.</creatorcontrib><title>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.</description><subject>Cancer</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>One dimensional models</subject><subject>Partial differential equations</subject><subject>Traveling waves</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgqf0AdwHXozfJ5LWUWrWodNGKyyGTZMrINKlJW_TvnVrRhbi6h_PichA6J3BJCCuv5kRrKKXSlAEDwtURGuypopRaHv9gpU_RKOe2BkaoYELQAXqYvBu7wYtkdr5rwxK_9ADPY7fdtDFkHBs8C764aVc-5J4xHX6KzndfytgE6xOehp3Za2fopDFd9qPvO0TPt5PF-L54nN1Nx9ePhSWKqYI7Jh012lsNVnNOlOLKUcEJcaKsjTM1rRvXWO2lssqzRgtlAUriSiY5sCG6OPSuU3zb-rypXuM29a_liiolQAJI2bvIwWVTzDn5plqndmXSR0Wg2s9W_Zmtz9BDJvfesPTpt_n_0CesKG17</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Shubina, M. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20230901</creationdate><title>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</title><author>Shubina, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-5d37d2a9ec90c95518858d26511d64badab2bfdfc9e78c8e3f968c0041d437503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>One dimensional models</topic><topic>Partial differential equations</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shubina, M. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubina, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><spage>616</spage><epage>627</epage><pages>616-627</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>In this paper, we obtain exact analytical solutions of equations of continuous mathematical models of tumor growth and invasion based on the model introduced by Chaplain and Lolas for the case of one spatial dimension. The models consist of a system of three nonlinear reaction–diffusion–taxis partial differential equations describing the interactions between cancer cells, the matrix degrading enzyme and the tissue. The obtained solutions are smooth nonnegative functions depending on the traveling wave variable with certain conditions imposed on model parameters.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478923030158</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2023-09, Vol.17 (3), p.616-627 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_proquest_journals_2886070077 |
source | SpringerLink (Online service) |
subjects | Cancer Exact solutions Mathematical models Mathematics Mathematics and Statistics One dimensional models Partial differential equations Traveling waves |
title | Exact Traveling Wave Solutions of One-Dimensional Models of Cancer Invasion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Traveling%20Wave%20Solutions%20of%20One-Dimensional%20Models%20of%20Cancer%20Invasion&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Shubina,%20M.%20V.&rft.date=2023-09-01&rft.volume=17&rft.issue=3&rft.spage=616&rft.epage=627&rft.pages=616-627&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478923030158&rft_dat=%3Cproquest_cross%3E2886070077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2886070077&rft_id=info:pmid/&rfr_iscdi=true |