Seeking empathy or suggesting a solution? Effects of chatbot messages on service failure recovery

Chatbots as prominent form of conversational agents are increasingly implemented as a user interface for digital customer-firm interactions on digital platforms and electronic markets, but they often fail to deliver suitable responses to user requests. In turn, individuals are left dissatisfied and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic markets 2023-12, Vol.33 (1), p.1-22, Article 56
Hauptverfasser: Haupt, Martin, Rozumowski, Anna, Freidank, Jan, Haas, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 1
container_title Electronic markets
container_volume 33
creator Haupt, Martin
Rozumowski, Anna
Freidank, Jan
Haas, Alexander
description Chatbots as prominent form of conversational agents are increasingly implemented as a user interface for digital customer-firm interactions on digital platforms and electronic markets, but they often fail to deliver suitable responses to user requests. In turn, individuals are left dissatisfied and turn away from chatbots, which harms successful chatbot implementation and ultimately firm’s service performance. Based on the stereotype content model, this paper explores the impact of two universally usable failure recovery messages as a strategy to preserve users’ post-recovery satisfaction and chatbot re-use intentions. Results of three experiments show that chatbot recovery messages have a positive effect on recovery responses, mediated by different elicited social cognitions. In particular, a solution-oriented message elicits stronger competence evaluations, whereas an empathy-seeking message leads to stronger warmth evaluations. The preference for one of these message types over the other depends on failure attribution and failure frequency. This study provides meaningful insights for chatbot technology developers and marketers seeking to understand and improve customer experience with digital conversational agents in a cost-effective way.
doi_str_mv 10.1007/s12525-023-00673-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885957961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885957961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-cd06109d4e835811f019462008256965d2fc43532826074d81c131e301b13fd43</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9A65IXI9eYHjMypimPpImLtQ1oQxMp7ZDhRmT_nupY9KdGyCX75x770HomsAtAZB3iVBOeQGUFQBC5vMETUhJaaFUBaf5DaQqhFTkHF2ktAagUIGcIPPm3GfbNdhtd6Zf7XGIOA1N41J_qBqcwmbo29Dd47n3zvYJB4_tyvTL0OOtS8lkFocOJxe_W-uwN-1miA5HZ8O3i_tLdObNJrmrv3uKPh7n77PnYvH69DJ7WBS2pNAXtgZBoKpLpxhXhPg8cCkogKJcVILX1NuScUYVFSDLWhFLGHEMyJIwX5dsim5G310MX0OeX6_DELvcUlOleMVlJUim6EjZGFKKzutdbLcm7jUBfYhSj1HqHKX-jVJDFuFRlFfq2nSUKMmAyVKyjLARSfmza1w8dv_H-Af4OH_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885957961</pqid></control><display><type>article</type><title>Seeking empathy or suggesting a solution? Effects of chatbot messages on service failure recovery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Haupt, Martin ; Rozumowski, Anna ; Freidank, Jan ; Haas, Alexander</creator><creatorcontrib>Haupt, Martin ; Rozumowski, Anna ; Freidank, Jan ; Haas, Alexander</creatorcontrib><description>Chatbots as prominent form of conversational agents are increasingly implemented as a user interface for digital customer-firm interactions on digital platforms and electronic markets, but they often fail to deliver suitable responses to user requests. In turn, individuals are left dissatisfied and turn away from chatbots, which harms successful chatbot implementation and ultimately firm’s service performance. Based on the stereotype content model, this paper explores the impact of two universally usable failure recovery messages as a strategy to preserve users’ post-recovery satisfaction and chatbot re-use intentions. Results of three experiments show that chatbot recovery messages have a positive effect on recovery responses, mediated by different elicited social cognitions. In particular, a solution-oriented message elicits stronger competence evaluations, whereas an empathy-seeking message leads to stronger warmth evaluations. The preference for one of these message types over the other depends on failure attribution and failure frequency. This study provides meaningful insights for chatbot technology developers and marketers seeking to understand and improve customer experience with digital conversational agents in a cost-effective way.</description><identifier>ISSN: 1019-6781</identifier><identifier>EISSN: 1422-8890</identifier><identifier>DOI: 10.1007/s12525-023-00673-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attribution ; Business and Management ; Chatbots ; Cost analysis ; Customer satisfaction ; e-Commerce/e-business ; Electronic commerce ; Empathy ; Employee behavior ; Failure ; IT in Business ; Messages ; Recovery ; Research Paper ; Service restoration ; Stereotypes ; User satisfaction</subject><ispartof>Electronic markets, 2023-12, Vol.33 (1), p.1-22, Article 56</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-cd06109d4e835811f019462008256965d2fc43532826074d81c131e301b13fd43</citedby><cites>FETCH-LOGICAL-c420t-cd06109d4e835811f019462008256965d2fc43532826074d81c131e301b13fd43</cites><orcidid>0000-0003-0501-4180 ; 0000-0002-1083-0388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12525-023-00673-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12525-023-00673-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Haupt, Martin</creatorcontrib><creatorcontrib>Rozumowski, Anna</creatorcontrib><creatorcontrib>Freidank, Jan</creatorcontrib><creatorcontrib>Haas, Alexander</creatorcontrib><title>Seeking empathy or suggesting a solution? Effects of chatbot messages on service failure recovery</title><title>Electronic markets</title><addtitle>Electron Markets</addtitle><description>Chatbots as prominent form of conversational agents are increasingly implemented as a user interface for digital customer-firm interactions on digital platforms and electronic markets, but they often fail to deliver suitable responses to user requests. In turn, individuals are left dissatisfied and turn away from chatbots, which harms successful chatbot implementation and ultimately firm’s service performance. Based on the stereotype content model, this paper explores the impact of two universally usable failure recovery messages as a strategy to preserve users’ post-recovery satisfaction and chatbot re-use intentions. Results of three experiments show that chatbot recovery messages have a positive effect on recovery responses, mediated by different elicited social cognitions. In particular, a solution-oriented message elicits stronger competence evaluations, whereas an empathy-seeking message leads to stronger warmth evaluations. The preference for one of these message types over the other depends on failure attribution and failure frequency. This study provides meaningful insights for chatbot technology developers and marketers seeking to understand and improve customer experience with digital conversational agents in a cost-effective way.</description><subject>Attribution</subject><subject>Business and Management</subject><subject>Chatbots</subject><subject>Cost analysis</subject><subject>Customer satisfaction</subject><subject>e-Commerce/e-business</subject><subject>Electronic commerce</subject><subject>Empathy</subject><subject>Employee behavior</subject><subject>Failure</subject><subject>IT in Business</subject><subject>Messages</subject><subject>Recovery</subject><subject>Research Paper</subject><subject>Service restoration</subject><subject>Stereotypes</subject><subject>User satisfaction</subject><issn>1019-6781</issn><issn>1422-8890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPAyEUhYnRxFr9A65IXI9eYHjMypimPpImLtQ1oQxMp7ZDhRmT_nupY9KdGyCX75x770HomsAtAZB3iVBOeQGUFQBC5vMETUhJaaFUBaf5DaQqhFTkHF2ktAagUIGcIPPm3GfbNdhtd6Zf7XGIOA1N41J_qBqcwmbo29Dd47n3zvYJB4_tyvTL0OOtS8lkFocOJxe_W-uwN-1miA5HZ8O3i_tLdObNJrmrv3uKPh7n77PnYvH69DJ7WBS2pNAXtgZBoKpLpxhXhPg8cCkogKJcVILX1NuScUYVFSDLWhFLGHEMyJIwX5dsim5G310MX0OeX6_DELvcUlOleMVlJUim6EjZGFKKzutdbLcm7jUBfYhSj1HqHKX-jVJDFuFRlFfq2nSUKMmAyVKyjLARSfmza1w8dv_H-Af4OH_U</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Haupt, Martin</creator><creator>Rozumowski, Anna</creator><creator>Freidank, Jan</creator><creator>Haas, Alexander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0501-4180</orcidid><orcidid>https://orcid.org/0000-0002-1083-0388</orcidid></search><sort><creationdate>20231201</creationdate><title>Seeking empathy or suggesting a solution? Effects of chatbot messages on service failure recovery</title><author>Haupt, Martin ; Rozumowski, Anna ; Freidank, Jan ; Haas, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-cd06109d4e835811f019462008256965d2fc43532826074d81c131e301b13fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attribution</topic><topic>Business and Management</topic><topic>Chatbots</topic><topic>Cost analysis</topic><topic>Customer satisfaction</topic><topic>e-Commerce/e-business</topic><topic>Electronic commerce</topic><topic>Empathy</topic><topic>Employee behavior</topic><topic>Failure</topic><topic>IT in Business</topic><topic>Messages</topic><topic>Recovery</topic><topic>Research Paper</topic><topic>Service restoration</topic><topic>Stereotypes</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, Martin</creatorcontrib><creatorcontrib>Rozumowski, Anna</creatorcontrib><creatorcontrib>Freidank, Jan</creatorcontrib><creatorcontrib>Haas, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Electronic markets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haupt, Martin</au><au>Rozumowski, Anna</au><au>Freidank, Jan</au><au>Haas, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seeking empathy or suggesting a solution? Effects of chatbot messages on service failure recovery</atitle><jtitle>Electronic markets</jtitle><stitle>Electron Markets</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>56</artnum><issn>1019-6781</issn><eissn>1422-8890</eissn><abstract>Chatbots as prominent form of conversational agents are increasingly implemented as a user interface for digital customer-firm interactions on digital platforms and electronic markets, but they often fail to deliver suitable responses to user requests. In turn, individuals are left dissatisfied and turn away from chatbots, which harms successful chatbot implementation and ultimately firm’s service performance. Based on the stereotype content model, this paper explores the impact of two universally usable failure recovery messages as a strategy to preserve users’ post-recovery satisfaction and chatbot re-use intentions. Results of three experiments show that chatbot recovery messages have a positive effect on recovery responses, mediated by different elicited social cognitions. In particular, a solution-oriented message elicits stronger competence evaluations, whereas an empathy-seeking message leads to stronger warmth evaluations. The preference for one of these message types over the other depends on failure attribution and failure frequency. This study provides meaningful insights for chatbot technology developers and marketers seeking to understand and improve customer experience with digital conversational agents in a cost-effective way.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12525-023-00673-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0501-4180</orcidid><orcidid>https://orcid.org/0000-0002-1083-0388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1019-6781
ispartof Electronic markets, 2023-12, Vol.33 (1), p.1-22, Article 56
issn 1019-6781
1422-8890
language eng
recordid cdi_proquest_journals_2885957961
source SpringerLink Journals - AutoHoldings
subjects Attribution
Business and Management
Chatbots
Cost analysis
Customer satisfaction
e-Commerce/e-business
Electronic commerce
Empathy
Employee behavior
Failure
IT in Business
Messages
Recovery
Research Paper
Service restoration
Stereotypes
User satisfaction
title Seeking empathy or suggesting a solution? Effects of chatbot messages on service failure recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seeking%20empathy%20or%20suggesting%20a%20solution?%20Effects%20of%20chatbot%20messages%20on%20service%20failure%20recovery&rft.jtitle=Electronic%20markets&rft.au=Haupt,%20Martin&rft.date=2023-12-01&rft.volume=33&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=56&rft.issn=1019-6781&rft.eissn=1422-8890&rft_id=info:doi/10.1007/s12525-023-00673-0&rft_dat=%3Cproquest_cross%3E2885957961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885957961&rft_id=info:pmid/&rfr_iscdi=true