SD-Net: Spatial Dual Network for Aerial Object Detection
The distribution direction of aerial objects is arbitrary compared to objects in natural images. However, the existing detectors identify and locate the targets by relying on the shared features, which leads to the contradiction of regression and classification tasks. To be specific, the classifier...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2023-10, Vol.51 (10), p.2067-2076 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2076 |
---|---|
container_issue | 10 |
container_start_page | 2067 |
container_title | Journal of the Indian Society of Remote Sensing |
container_volume | 51 |
creator | Gao, Yangte Bi, Fukun Chen, Liang Nie, Xiaoyu |
description | The distribution direction of aerial objects is arbitrary compared to objects in natural images. However, the existing detectors identify and locate the targets by relying on the shared features, which leads to the contradiction of regression and classification tasks. To be specific, the classifier suppresses rotation-sensitive features, while the regressor relies on rotation-variable features. To address the above contradictions, a Spatial Dual Network (SD-Net) is proposed, which consists of two modules: Polarization Dual Pyramid Module (PDPM) and Spatial Coordinate Attention Module (SCAM). In the SCAM module, to be able to capture channel-related features and global spatial features in different directions, an attention module is built with different convolution kernels that slide in both horizontal and vertical directions. In addition, the polarization function in the Polarization Dual Pyramid Module can split features into features suitable for classification and regression tasks for use in the classifier and regressor of the network, enabling more refined detection. The experimental results on three remote sensing datasets (i.e., DOTA, UCAS-AOD, and HRSC2016) demonstrate that the proposed method achieves higher performance on detection tasks while maintaining high efficiency. |
doi_str_mv | 10.1007/s12524-023-01750-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885914343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885914343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-33ba673e3e87f3bec7533e492ea002636d74cb1b016d4c076659c303906ba7ff3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKcFz9FJJh8bb6XrFxR7qIK3kE2z0lq7NdlF_O9NXcGbl3nD470Z-BFyzuCSAeirxLjkggJHCkxLoOaAjMBoQRFAHeadS0mVgpdjcpLSOptCMj4i5aKij6G7LhY7163cpqj6PLLz2ca3omljMQlx78_rdfBdUYUuy6rdnpKjxm1SOPvVMXm-vXma3tPZ_O5hOplRzzV0FLF2SmPAUOoG6-C1RAzC8OAAuEK11MLXrAamlsKDVkoaj4AGVO100-CYXAx3d7H96EPq7Lrt4za_tLwspWECBeYUH1I-tinF0NhdXL27-GUZ2D0hOxCymZD9IWRNLuFQSjm8fQ3x7_Q_rW8goGZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885914343</pqid></control><display><type>article</type><title>SD-Net: Spatial Dual Network for Aerial Object Detection</title><source>SpringerLink (Online service)</source><creator>Gao, Yangte ; Bi, Fukun ; Chen, Liang ; Nie, Xiaoyu</creator><creatorcontrib>Gao, Yangte ; Bi, Fukun ; Chen, Liang ; Nie, Xiaoyu</creatorcontrib><description>The distribution direction of aerial objects is arbitrary compared to objects in natural images. However, the existing detectors identify and locate the targets by relying on the shared features, which leads to the contradiction of regression and classification tasks. To be specific, the classifier suppresses rotation-sensitive features, while the regressor relies on rotation-variable features. To address the above contradictions, a Spatial Dual Network (SD-Net) is proposed, which consists of two modules: Polarization Dual Pyramid Module (PDPM) and Spatial Coordinate Attention Module (SCAM). In the SCAM module, to be able to capture channel-related features and global spatial features in different directions, an attention module is built with different convolution kernels that slide in both horizontal and vertical directions. In addition, the polarization function in the Polarization Dual Pyramid Module can split features into features suitable for classification and regression tasks for use in the classifier and regressor of the network, enabling more refined detection. The experimental results on three remote sensing datasets (i.e., DOTA, UCAS-AOD, and HRSC2016) demonstrate that the proposed method achieves higher performance on detection tasks while maintaining high efficiency.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-023-01750-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Classification ; Classifiers ; Earth and Environmental Science ; Earth Sciences ; Modules ; Object recognition ; Polarization ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article ; Rotation</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2023-10, Vol.51 (10), p.2067-2076</ispartof><rights>Indian Society of Remote Sensing 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-33ba673e3e87f3bec7533e492ea002636d74cb1b016d4c076659c303906ba7ff3</cites><orcidid>0000-0001-8999-300X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-023-01750-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-023-01750-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Yangte</creatorcontrib><creatorcontrib>Bi, Fukun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Nie, Xiaoyu</creatorcontrib><title>SD-Net: Spatial Dual Network for Aerial Object Detection</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>The distribution direction of aerial objects is arbitrary compared to objects in natural images. However, the existing detectors identify and locate the targets by relying on the shared features, which leads to the contradiction of regression and classification tasks. To be specific, the classifier suppresses rotation-sensitive features, while the regressor relies on rotation-variable features. To address the above contradictions, a Spatial Dual Network (SD-Net) is proposed, which consists of two modules: Polarization Dual Pyramid Module (PDPM) and Spatial Coordinate Attention Module (SCAM). In the SCAM module, to be able to capture channel-related features and global spatial features in different directions, an attention module is built with different convolution kernels that slide in both horizontal and vertical directions. In addition, the polarization function in the Polarization Dual Pyramid Module can split features into features suitable for classification and regression tasks for use in the classifier and regressor of the network, enabling more refined detection. The experimental results on three remote sensing datasets (i.e., DOTA, UCAS-AOD, and HRSC2016) demonstrate that the proposed method achieves higher performance on detection tasks while maintaining high efficiency.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Polarization</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Rotation</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gKcFz9FJJh8bb6XrFxR7qIK3kE2z0lq7NdlF_O9NXcGbl3nD470Z-BFyzuCSAeirxLjkggJHCkxLoOaAjMBoQRFAHeadS0mVgpdjcpLSOptCMj4i5aKij6G7LhY7163cpqj6PLLz2ca3omljMQlx78_rdfBdUYUuy6rdnpKjxm1SOPvVMXm-vXma3tPZ_O5hOplRzzV0FLF2SmPAUOoG6-C1RAzC8OAAuEK11MLXrAamlsKDVkoaj4AGVO100-CYXAx3d7H96EPq7Lrt4za_tLwspWECBeYUH1I-tinF0NhdXL27-GUZ2D0hOxCymZD9IWRNLuFQSjm8fQ3x7_Q_rW8goGZP</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Gao, Yangte</creator><creator>Bi, Fukun</creator><creator>Chen, Liang</creator><creator>Nie, Xiaoyu</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8999-300X</orcidid></search><sort><creationdate>20231001</creationdate><title>SD-Net: Spatial Dual Network for Aerial Object Detection</title><author>Gao, Yangte ; Bi, Fukun ; Chen, Liang ; Nie, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-33ba673e3e87f3bec7533e492ea002636d74cb1b016d4c076659c303906ba7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Polarization</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yangte</creatorcontrib><creatorcontrib>Bi, Fukun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Nie, Xiaoyu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yangte</au><au>Bi, Fukun</au><au>Chen, Liang</au><au>Nie, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SD-Net: Spatial Dual Network for Aerial Object Detection</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>51</volume><issue>10</issue><spage>2067</spage><epage>2076</epage><pages>2067-2076</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>The distribution direction of aerial objects is arbitrary compared to objects in natural images. However, the existing detectors identify and locate the targets by relying on the shared features, which leads to the contradiction of regression and classification tasks. To be specific, the classifier suppresses rotation-sensitive features, while the regressor relies on rotation-variable features. To address the above contradictions, a Spatial Dual Network (SD-Net) is proposed, which consists of two modules: Polarization Dual Pyramid Module (PDPM) and Spatial Coordinate Attention Module (SCAM). In the SCAM module, to be able to capture channel-related features and global spatial features in different directions, an attention module is built with different convolution kernels that slide in both horizontal and vertical directions. In addition, the polarization function in the Polarization Dual Pyramid Module can split features into features suitable for classification and regression tasks for use in the classifier and regressor of the network, enabling more refined detection. The experimental results on three remote sensing datasets (i.e., DOTA, UCAS-AOD, and HRSC2016) demonstrate that the proposed method achieves higher performance on detection tasks while maintaining high efficiency.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-023-01750-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8999-300X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-660X |
ispartof | Journal of the Indian Society of Remote Sensing, 2023-10, Vol.51 (10), p.2067-2076 |
issn | 0255-660X 0974-3006 |
language | eng |
recordid | cdi_proquest_journals_2885914343 |
source | SpringerLink (Online service) |
subjects | Classification Classifiers Earth and Environmental Science Earth Sciences Modules Object recognition Polarization Remote sensing Remote Sensing/Photogrammetry Research Article Rotation |
title | SD-Net: Spatial Dual Network for Aerial Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SD-Net:%20Spatial%20Dual%20Network%20for%20Aerial%20Object%20Detection&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Gao,%20Yangte&rft.date=2023-10-01&rft.volume=51&rft.issue=10&rft.spage=2067&rft.epage=2076&rft.pages=2067-2076&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-023-01750-9&rft_dat=%3Cproquest_cross%3E2885914343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885914343&rft_id=info:pmid/&rfr_iscdi=true |