An electrochemical aptasensor based on catalytic hairpin self-assembly and co-amplification of AuPd/Fe-MOF and Au/Cu2O for ultrasensitive detection of Cd2

Cadmium (Cd), a typical heavy metal not essential for the human body, can cause harm to the liver and kidneys upon exposure. Hence, rapid cadmium detection in the environment is of utmost importance. This research presents an effective approach for detecting divalent cadmium ions (Cd 2+ ) using a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2023-12, Vol.77 (12), p.7577-7587
Hauptverfasser: He, Jintao, Zhang, Baozhong, Tian, Panpan, Li, Ying, Liu, Xiaolong, Ma, Xinyue, Lin, Min, Zhu, Huina, Chen, Hanyu, Li, Liping, He, Baoshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7587
container_issue 12
container_start_page 7577
container_title Chemical papers
container_volume 77
creator He, Jintao
Zhang, Baozhong
Tian, Panpan
Li, Ying
Liu, Xiaolong
Ma, Xinyue
Lin, Min
Zhu, Huina
Chen, Hanyu
Li, Liping
He, Baoshan
description Cadmium (Cd), a typical heavy metal not essential for the human body, can cause harm to the liver and kidneys upon exposure. Hence, rapid cadmium detection in the environment is of utmost importance. This research presents an effective approach for detecting divalent cadmium ions (Cd 2+ ) using a sensitive dual hairpin (HP) electrochemical aptasensor. The aptasensor incorporates AuPd/Fe-MOF as signal labels and Au/Cu 2 O as the substrate material, and the rapid detection of divalent cadmium ions (Cd 2+ ) was based on catalytic hairpin self-assembly (CHA), as the recognition strategy. Au/Cu 2 O increased the specific surface area of the electrode and provided abundant sites for capturing the complementary deoxyribonucleic acid (CDNA) probe. The electrochemical signal is then amplified through synergistic catalytic hydrogen peroxide with AuPd/Fe-MOF, thereby enhancing the aptasensor's sensitivity. Moreover, the dual HP design effectively reduces the likelihood of non-specific capture and minimizes false positives. In this study, various analytical techniques were utilized to characterize the material and evaluate the aptasensor's performance. The morphological characteristics of the material were observed using scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were employed to analyze the elemental composition and distribution of the material, respectively. The electrochemical behavior of the sensor was studied using cyclic voltammetry (CV), while electrochemical impedance spectroscopy (EIS) helped understand the aptasensor's assembly process. Furthermore, the aptasensor's performance was assessed using differential pulse voltammetry (DPV). Under the optimized experimental conditions, the constructed sensor demonstrated effective detection of Cd 2+ in the concentration range of 10 –4 –10 µM, with a remarkably low detection limit of 2.27 × 10 –5  µM. The feasibility of the sensor was validated by successfully detecting Cd 2+ in real water samples. .
doi_str_mv 10.1007/s11696-023-03082-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885914228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885914228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5edde90cf70ec55e4c9e523831f25a761cd1a88848690b6f0c78a028713db3113</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EEqHwAj1Z4mwyttde7zGKCCAVpYf2bDn2bOtqs7vYXtS8Sp8Wk1Tixmnm8H__jPQRcs3hCwdo15lz3WkGQjKQYAR7fkNWXErNOmjVW7ICqTXTUon35EPOTwBNAwpW5GUzUhzQlzT5RzxG7wbq5uIyjnlK9FCXQKeRelfccCrR00cX0xxHmnHomcsZj4fhRN0YqJ-YO85D7GtLiRWaerpZbsN6h-znfnfObJb1dhF72tfyZSjpfCiW-BtpwFL_eOW2QXwk73o3ZPz0Oq_I_e7r3fY7u9l_-7Hd3DAvAApTGAJ24PsW0CuFje9QCWkk74VyreY-cGeMaYzu4KB78K1xIEzLZThIzuUV-XzpndP0a8Fc7NO0pLGetMIY1fFGCFNT4pLyaco5YW_nFI8unSwH-9eBvTiw1YE9O7DPFZIXKNfw-IDpX_V_qD_7JItz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885914228</pqid></control><display><type>article</type><title>An electrochemical aptasensor based on catalytic hairpin self-assembly and co-amplification of AuPd/Fe-MOF and Au/Cu2O for ultrasensitive detection of Cd2</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Jintao ; Zhang, Baozhong ; Tian, Panpan ; Li, Ying ; Liu, Xiaolong ; Ma, Xinyue ; Lin, Min ; Zhu, Huina ; Chen, Hanyu ; Li, Liping ; He, Baoshan</creator><creatorcontrib>He, Jintao ; Zhang, Baozhong ; Tian, Panpan ; Li, Ying ; Liu, Xiaolong ; Ma, Xinyue ; Lin, Min ; Zhu, Huina ; Chen, Hanyu ; Li, Liping ; He, Baoshan</creatorcontrib><description>Cadmium (Cd), a typical heavy metal not essential for the human body, can cause harm to the liver and kidneys upon exposure. Hence, rapid cadmium detection in the environment is of utmost importance. This research presents an effective approach for detecting divalent cadmium ions (Cd 2+ ) using a sensitive dual hairpin (HP) electrochemical aptasensor. The aptasensor incorporates AuPd/Fe-MOF as signal labels and Au/Cu 2 O as the substrate material, and the rapid detection of divalent cadmium ions (Cd 2+ ) was based on catalytic hairpin self-assembly (CHA), as the recognition strategy. Au/Cu 2 O increased the specific surface area of the electrode and provided abundant sites for capturing the complementary deoxyribonucleic acid (CDNA) probe. The electrochemical signal is then amplified through synergistic catalytic hydrogen peroxide with AuPd/Fe-MOF, thereby enhancing the aptasensor's sensitivity. Moreover, the dual HP design effectively reduces the likelihood of non-specific capture and minimizes false positives. In this study, various analytical techniques were utilized to characterize the material and evaluate the aptasensor's performance. The morphological characteristics of the material were observed using scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were employed to analyze the elemental composition and distribution of the material, respectively. The electrochemical behavior of the sensor was studied using cyclic voltammetry (CV), while electrochemical impedance spectroscopy (EIS) helped understand the aptasensor's assembly process. Furthermore, the aptasensor's performance was assessed using differential pulse voltammetry (DPV). Under the optimized experimental conditions, the constructed sensor demonstrated effective detection of Cd 2+ in the concentration range of 10 –4 –10 µM, with a remarkably low detection limit of 2.27 × 10 –5  µM. The feasibility of the sensor was validated by successfully detecting Cd 2+ in real water samples. .</description><identifier>ISSN: 0366-6352</identifier><identifier>EISSN: 1336-9075</identifier><identifier>EISSN: 2585-7290</identifier><identifier>DOI: 10.1007/s11696-023-03082-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amplification ; Biochemistry ; Biotechnology ; Cadmium ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Copper oxides ; Deoxyribonucleic acid ; DNA ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Gold ; Heavy metals ; Hydrogen peroxide ; Industrial Chemistry/Chemical Engineering ; Intermetallic compounds ; Materials Science ; Medicinal Chemistry ; Metal-organic frameworks ; Original Paper ; Performance evaluation ; Self-assembly ; Sensitivity enhancement ; Sensors ; Spectrum analysis ; Substrates ; Voltammetry ; Water sampling</subject><ispartof>Chemical papers, 2023-12, Vol.77 (12), p.7577-7587</ispartof><rights>The Author(s), under exclusive licence to the Institute of Chemistry, Slovak Academy of Sciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5edde90cf70ec55e4c9e523831f25a761cd1a88848690b6f0c78a028713db3113</cites><orcidid>0000-0002-3842-2407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11696-023-03082-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11696-023-03082-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>He, Jintao</creatorcontrib><creatorcontrib>Zhang, Baozhong</creatorcontrib><creatorcontrib>Tian, Panpan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Liu, Xiaolong</creatorcontrib><creatorcontrib>Ma, Xinyue</creatorcontrib><creatorcontrib>Lin, Min</creatorcontrib><creatorcontrib>Zhu, Huina</creatorcontrib><creatorcontrib>Chen, Hanyu</creatorcontrib><creatorcontrib>Li, Liping</creatorcontrib><creatorcontrib>He, Baoshan</creatorcontrib><title>An electrochemical aptasensor based on catalytic hairpin self-assembly and co-amplification of AuPd/Fe-MOF and Au/Cu2O for ultrasensitive detection of Cd2</title><title>Chemical papers</title><addtitle>Chem. Pap</addtitle><description>Cadmium (Cd), a typical heavy metal not essential for the human body, can cause harm to the liver and kidneys upon exposure. Hence, rapid cadmium detection in the environment is of utmost importance. This research presents an effective approach for detecting divalent cadmium ions (Cd 2+ ) using a sensitive dual hairpin (HP) electrochemical aptasensor. The aptasensor incorporates AuPd/Fe-MOF as signal labels and Au/Cu 2 O as the substrate material, and the rapid detection of divalent cadmium ions (Cd 2+ ) was based on catalytic hairpin self-assembly (CHA), as the recognition strategy. Au/Cu 2 O increased the specific surface area of the electrode and provided abundant sites for capturing the complementary deoxyribonucleic acid (CDNA) probe. The electrochemical signal is then amplified through synergistic catalytic hydrogen peroxide with AuPd/Fe-MOF, thereby enhancing the aptasensor's sensitivity. Moreover, the dual HP design effectively reduces the likelihood of non-specific capture and minimizes false positives. In this study, various analytical techniques were utilized to characterize the material and evaluate the aptasensor's performance. The morphological characteristics of the material were observed using scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were employed to analyze the elemental composition and distribution of the material, respectively. The electrochemical behavior of the sensor was studied using cyclic voltammetry (CV), while electrochemical impedance spectroscopy (EIS) helped understand the aptasensor's assembly process. Furthermore, the aptasensor's performance was assessed using differential pulse voltammetry (DPV). Under the optimized experimental conditions, the constructed sensor demonstrated effective detection of Cd 2+ in the concentration range of 10 –4 –10 µM, with a remarkably low detection limit of 2.27 × 10 –5  µM. The feasibility of the sensor was validated by successfully detecting Cd 2+ in real water samples. .</description><subject>Amplification</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Cadmium</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Copper oxides</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Hydrogen peroxide</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Medicinal Chemistry</subject><subject>Metal-organic frameworks</subject><subject>Original Paper</subject><subject>Performance evaluation</subject><subject>Self-assembly</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Voltammetry</subject><subject>Water sampling</subject><issn>0366-6352</issn><issn>1336-9075</issn><issn>2585-7290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFuEzEQhi0EEqHwAj1Z4mwyttde7zGKCCAVpYf2bDn2bOtqs7vYXtS8Sp8Wk1Tixmnm8H__jPQRcs3hCwdo15lz3WkGQjKQYAR7fkNWXErNOmjVW7ICqTXTUon35EPOTwBNAwpW5GUzUhzQlzT5RzxG7wbq5uIyjnlK9FCXQKeRelfccCrR00cX0xxHmnHomcsZj4fhRN0YqJ-YO85D7GtLiRWaerpZbsN6h-znfnfObJb1dhF72tfyZSjpfCiW-BtpwFL_eOW2QXwk73o3ZPz0Oq_I_e7r3fY7u9l_-7Hd3DAvAApTGAJ24PsW0CuFje9QCWkk74VyreY-cGeMaYzu4KB78K1xIEzLZThIzuUV-XzpndP0a8Fc7NO0pLGetMIY1fFGCFNT4pLyaco5YW_nFI8unSwH-9eBvTiw1YE9O7DPFZIXKNfw-IDpX_V_qD_7JItz</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>He, Jintao</creator><creator>Zhang, Baozhong</creator><creator>Tian, Panpan</creator><creator>Li, Ying</creator><creator>Liu, Xiaolong</creator><creator>Ma, Xinyue</creator><creator>Lin, Min</creator><creator>Zhu, Huina</creator><creator>Chen, Hanyu</creator><creator>Li, Liping</creator><creator>He, Baoshan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3842-2407</orcidid></search><sort><creationdate>20231201</creationdate><title>An electrochemical aptasensor based on catalytic hairpin self-assembly and co-amplification of AuPd/Fe-MOF and Au/Cu2O for ultrasensitive detection of Cd2</title><author>He, Jintao ; Zhang, Baozhong ; Tian, Panpan ; Li, Ying ; Liu, Xiaolong ; Ma, Xinyue ; Lin, Min ; Zhu, Huina ; Chen, Hanyu ; Li, Liping ; He, Baoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5edde90cf70ec55e4c9e523831f25a761cd1a88848690b6f0c78a028713db3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplification</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Cadmium</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Copper oxides</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Hydrogen peroxide</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Medicinal Chemistry</topic><topic>Metal-organic frameworks</topic><topic>Original Paper</topic><topic>Performance evaluation</topic><topic>Self-assembly</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Voltammetry</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jintao</creatorcontrib><creatorcontrib>Zhang, Baozhong</creatorcontrib><creatorcontrib>Tian, Panpan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Liu, Xiaolong</creatorcontrib><creatorcontrib>Ma, Xinyue</creatorcontrib><creatorcontrib>Lin, Min</creatorcontrib><creatorcontrib>Zhu, Huina</creatorcontrib><creatorcontrib>Chen, Hanyu</creatorcontrib><creatorcontrib>Li, Liping</creatorcontrib><creatorcontrib>He, Baoshan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jintao</au><au>Zhang, Baozhong</au><au>Tian, Panpan</au><au>Li, Ying</au><au>Liu, Xiaolong</au><au>Ma, Xinyue</au><au>Lin, Min</au><au>Zhu, Huina</au><au>Chen, Hanyu</au><au>Li, Liping</au><au>He, Baoshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An electrochemical aptasensor based on catalytic hairpin self-assembly and co-amplification of AuPd/Fe-MOF and Au/Cu2O for ultrasensitive detection of Cd2</atitle><jtitle>Chemical papers</jtitle><stitle>Chem. Pap</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>77</volume><issue>12</issue><spage>7577</spage><epage>7587</epage><pages>7577-7587</pages><issn>0366-6352</issn><eissn>1336-9075</eissn><eissn>2585-7290</eissn><abstract>Cadmium (Cd), a typical heavy metal not essential for the human body, can cause harm to the liver and kidneys upon exposure. Hence, rapid cadmium detection in the environment is of utmost importance. This research presents an effective approach for detecting divalent cadmium ions (Cd 2+ ) using a sensitive dual hairpin (HP) electrochemical aptasensor. The aptasensor incorporates AuPd/Fe-MOF as signal labels and Au/Cu 2 O as the substrate material, and the rapid detection of divalent cadmium ions (Cd 2+ ) was based on catalytic hairpin self-assembly (CHA), as the recognition strategy. Au/Cu 2 O increased the specific surface area of the electrode and provided abundant sites for capturing the complementary deoxyribonucleic acid (CDNA) probe. The electrochemical signal is then amplified through synergistic catalytic hydrogen peroxide with AuPd/Fe-MOF, thereby enhancing the aptasensor's sensitivity. Moreover, the dual HP design effectively reduces the likelihood of non-specific capture and minimizes false positives. In this study, various analytical techniques were utilized to characterize the material and evaluate the aptasensor's performance. The morphological characteristics of the material were observed using scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were employed to analyze the elemental composition and distribution of the material, respectively. The electrochemical behavior of the sensor was studied using cyclic voltammetry (CV), while electrochemical impedance spectroscopy (EIS) helped understand the aptasensor's assembly process. Furthermore, the aptasensor's performance was assessed using differential pulse voltammetry (DPV). Under the optimized experimental conditions, the constructed sensor demonstrated effective detection of Cd 2+ in the concentration range of 10 –4 –10 µM, with a remarkably low detection limit of 2.27 × 10 –5  µM. The feasibility of the sensor was validated by successfully detecting Cd 2+ in real water samples. .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11696-023-03082-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3842-2407</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0366-6352
ispartof Chemical papers, 2023-12, Vol.77 (12), p.7577-7587
issn 0366-6352
1336-9075
2585-7290
language eng
recordid cdi_proquest_journals_2885914228
source SpringerLink Journals - AutoHoldings
subjects Amplification
Biochemistry
Biotechnology
Cadmium
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Copper oxides
Deoxyribonucleic acid
DNA
Electrochemical analysis
Electrochemical impedance spectroscopy
Gold
Heavy metals
Hydrogen peroxide
Industrial Chemistry/Chemical Engineering
Intermetallic compounds
Materials Science
Medicinal Chemistry
Metal-organic frameworks
Original Paper
Performance evaluation
Self-assembly
Sensitivity enhancement
Sensors
Spectrum analysis
Substrates
Voltammetry
Water sampling
title An electrochemical aptasensor based on catalytic hairpin self-assembly and co-amplification of AuPd/Fe-MOF and Au/Cu2O for ultrasensitive detection of Cd2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20electrochemical%20aptasensor%20based%20on%20catalytic%20hairpin%20self-assembly%20and%20co-amplification%20of%20AuPd/Fe-MOF%20and%20Au/Cu2O%20for%20ultrasensitive%20detection%20of%20Cd2&rft.jtitle=Chemical%20papers&rft.au=He,%20Jintao&rft.date=2023-12-01&rft.volume=77&rft.issue=12&rft.spage=7577&rft.epage=7587&rft.pages=7577-7587&rft.issn=0366-6352&rft.eissn=1336-9075&rft_id=info:doi/10.1007/s11696-023-03082-x&rft_dat=%3Cproquest_cross%3E2885914228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885914228&rft_id=info:pmid/&rfr_iscdi=true