Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering
In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023-01, Vol.25, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Shen, Qiangqiang Yi, Shuangyan Liang, Yongsheng Chen, Yongyong Liu, Wei |
description | In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data. |
doi_str_mv | 10.1109/TMM.2022.3207922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2885649994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9895324</ieee_id><sourcerecordid>2885649994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bLLJUYtVoUWoFU8S0nSiW7e7bbKr-N-bssXTPGZ-7w08hC4pGVFK9M1iNhsxwtiIM1Joxo7QgOqcZoQUxXHSgpFMM0pO0VmMa0JoLkgxQO93ZWVbCLbCExtbPG1-srmtv_ActgEi1K1ty6bGb2X7ie93Xfltq7TEi2Dr6Juw6c9J4ZduGbfWAR5XXUyRZf1xjk68rSJcHOYQvU7uF-PHbPr88DS-nWaOadpmfumdXfnckRVXImdKKs6dIkwC8EIIyd0KYOlBeS01OJpLkTAmpZPaEs-H6LrP3YZm10FszbrpQp1eGqaUkLnWOk8U6SkXmhgDeLMN5caGX0OJ2ZdoUolmX6I5lJgsV72lBIB_XCstOMv5H2sWbok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885649994</pqid></control><display><type>article</type><title>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Qiangqiang ; Yi, Shuangyan ; Liang, Yongsheng ; Chen, Yongyong ; Liu, Wei</creator><creatorcontrib>Shen, Qiangqiang ; Yi, Shuangyan ; Liang, Yongsheng ; Chen, Yongyong ; Liu, Wei</creatorcontrib><description>In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3207922</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Complexity ; distribute ; Equivalence ; equivalent transformation ; fast low-rank ; Iterative methods ; Matrix decomposition ; Minimization ; Null space ; Representations ; Singular value decomposition ; Sparse matrices ; Streaming media ; Subspace clustering</subject><ispartof>IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</citedby><cites>FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</cites><orcidid>0000-0003-4771-6105 ; 0000-0003-1970-1993 ; 0000-0002-0891-5577 ; 0000-0002-3564-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9895324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9895324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Qiangqiang</creatorcontrib><creatorcontrib>Yi, Shuangyan</creatorcontrib><creatorcontrib>Liang, Yongsheng</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Complexity</subject><subject>distribute</subject><subject>Equivalence</subject><subject>equivalent transformation</subject><subject>fast low-rank</subject><subject>Iterative methods</subject><subject>Matrix decomposition</subject><subject>Minimization</subject><subject>Null space</subject><subject>Representations</subject><subject>Singular value decomposition</subject><subject>Sparse matrices</subject><subject>Streaming media</subject><subject>Subspace clustering</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bLLJUYtVoUWoFU8S0nSiW7e7bbKr-N-bssXTPGZ-7w08hC4pGVFK9M1iNhsxwtiIM1Joxo7QgOqcZoQUxXHSgpFMM0pO0VmMa0JoLkgxQO93ZWVbCLbCExtbPG1-srmtv_ActgEi1K1ty6bGb2X7ie93Xfltq7TEi2Dr6Juw6c9J4ZduGbfWAR5XXUyRZf1xjk68rSJcHOYQvU7uF-PHbPr88DS-nWaOadpmfumdXfnckRVXImdKKs6dIkwC8EIIyd0KYOlBeS01OJpLkTAmpZPaEs-H6LrP3YZm10FszbrpQp1eGqaUkLnWOk8U6SkXmhgDeLMN5caGX0OJ2ZdoUolmX6I5lJgsV72lBIB_XCstOMv5H2sWbok</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shen, Qiangqiang</creator><creator>Yi, Shuangyan</creator><creator>Liang, Yongsheng</creator><creator>Chen, Yongyong</creator><creator>Liu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4771-6105</orcidid><orcidid>https://orcid.org/0000-0003-1970-1993</orcidid><orcidid>https://orcid.org/0000-0002-0891-5577</orcidid><orcidid>https://orcid.org/0000-0002-3564-6042</orcidid></search><sort><creationdate>20230101</creationdate><title>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</title><author>Shen, Qiangqiang ; Yi, Shuangyan ; Liang, Yongsheng ; Chen, Yongyong ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Complexity</topic><topic>distribute</topic><topic>Equivalence</topic><topic>equivalent transformation</topic><topic>fast low-rank</topic><topic>Iterative methods</topic><topic>Matrix decomposition</topic><topic>Minimization</topic><topic>Null space</topic><topic>Representations</topic><topic>Singular value decomposition</topic><topic>Sparse matrices</topic><topic>Streaming media</topic><topic>Subspace clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Qiangqiang</creatorcontrib><creatorcontrib>Yi, Shuangyan</creatorcontrib><creatorcontrib>Liang, Yongsheng</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Qiangqiang</au><au>Yi, Shuangyan</au><au>Liang, Yongsheng</au><au>Chen, Yongyong</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3207922</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4771-6105</orcidid><orcidid>https://orcid.org/0000-0003-1970-1993</orcidid><orcidid>https://orcid.org/0000-0002-0891-5577</orcidid><orcidid>https://orcid.org/0000-0002-3564-6042</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2885649994 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering Clustering algorithms Complexity distribute Equivalence equivalent transformation fast low-rank Iterative methods Matrix decomposition Minimization Null space Representations Singular value decomposition Sparse matrices Streaming media Subspace clustering |
title | Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilateral%20Fast%20Low-Rank%20Representation%20With%20Equivalent%20Transformation%20for%20Subspace%20Clustering&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Shen,%20Qiangqiang&rft.date=2023-01-01&rft.volume=25&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3207922&rft_dat=%3Cproquest_RIE%3E2885649994%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885649994&rft_id=info:pmid/&rft_ieee_id=9895324&rfr_iscdi=true |