Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering

In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2023-01, Vol.25, p.1-13
Hauptverfasser: Shen, Qiangqiang, Yi, Shuangyan, Liang, Yongsheng, Chen, Yongyong, Liu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on multimedia
container_volume 25
creator Shen, Qiangqiang
Yi, Shuangyan
Liang, Yongsheng
Chen, Yongyong
Liu, Wei
description In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.
doi_str_mv 10.1109/TMM.2022.3207922
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2885649994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9895324</ieee_id><sourcerecordid>2885649994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bLLJUYtVoUWoFU8S0nSiW7e7bbKr-N-bssXTPGZ-7w08hC4pGVFK9M1iNhsxwtiIM1Joxo7QgOqcZoQUxXHSgpFMM0pO0VmMa0JoLkgxQO93ZWVbCLbCExtbPG1-srmtv_ActgEi1K1ty6bGb2X7ie93Xfltq7TEi2Dr6Juw6c9J4ZduGbfWAR5XXUyRZf1xjk68rSJcHOYQvU7uF-PHbPr88DS-nWaOadpmfumdXfnckRVXImdKKs6dIkwC8EIIyd0KYOlBeS01OJpLkTAmpZPaEs-H6LrP3YZm10FszbrpQp1eGqaUkLnWOk8U6SkXmhgDeLMN5caGX0OJ2ZdoUolmX6I5lJgsV72lBIB_XCstOMv5H2sWbok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885649994</pqid></control><display><type>article</type><title>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Qiangqiang ; Yi, Shuangyan ; Liang, Yongsheng ; Chen, Yongyong ; Liu, Wei</creator><creatorcontrib>Shen, Qiangqiang ; Yi, Shuangyan ; Liang, Yongsheng ; Chen, Yongyong ; Liu, Wei</creatorcontrib><description>In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3207922</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Complexity ; distribute ; Equivalence ; equivalent transformation ; fast low-rank ; Iterative methods ; Matrix decomposition ; Minimization ; Null space ; Representations ; Singular value decomposition ; Sparse matrices ; Streaming media ; Subspace clustering</subject><ispartof>IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</citedby><cites>FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</cites><orcidid>0000-0003-4771-6105 ; 0000-0003-1970-1993 ; 0000-0002-0891-5577 ; 0000-0002-3564-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9895324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9895324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Qiangqiang</creatorcontrib><creatorcontrib>Yi, Shuangyan</creatorcontrib><creatorcontrib>Liang, Yongsheng</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Complexity</subject><subject>distribute</subject><subject>Equivalence</subject><subject>equivalent transformation</subject><subject>fast low-rank</subject><subject>Iterative methods</subject><subject>Matrix decomposition</subject><subject>Minimization</subject><subject>Null space</subject><subject>Representations</subject><subject>Singular value decomposition</subject><subject>Sparse matrices</subject><subject>Streaming media</subject><subject>Subspace clustering</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bLLJUYtVoUWoFU8S0nSiW7e7bbKr-N-bssXTPGZ-7w08hC4pGVFK9M1iNhsxwtiIM1Joxo7QgOqcZoQUxXHSgpFMM0pO0VmMa0JoLkgxQO93ZWVbCLbCExtbPG1-srmtv_ActgEi1K1ty6bGb2X7ie93Xfltq7TEi2Dr6Juw6c9J4ZduGbfWAR5XXUyRZf1xjk68rSJcHOYQvU7uF-PHbPr88DS-nWaOadpmfumdXfnckRVXImdKKs6dIkwC8EIIyd0KYOlBeS01OJpLkTAmpZPaEs-H6LrP3YZm10FszbrpQp1eGqaUkLnWOk8U6SkXmhgDeLMN5caGX0OJ2ZdoUolmX6I5lJgsV72lBIB_XCstOMv5H2sWbok</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Shen, Qiangqiang</creator><creator>Yi, Shuangyan</creator><creator>Liang, Yongsheng</creator><creator>Chen, Yongyong</creator><creator>Liu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4771-6105</orcidid><orcidid>https://orcid.org/0000-0003-1970-1993</orcidid><orcidid>https://orcid.org/0000-0002-0891-5577</orcidid><orcidid>https://orcid.org/0000-0002-3564-6042</orcidid></search><sort><creationdate>20230101</creationdate><title>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</title><author>Shen, Qiangqiang ; Yi, Shuangyan ; Liang, Yongsheng ; Chen, Yongyong ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fbfcadf4c0d3854286833c8026ee375563cdeebfe8f969ec1465542266c69a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Complexity</topic><topic>distribute</topic><topic>Equivalence</topic><topic>equivalent transformation</topic><topic>fast low-rank</topic><topic>Iterative methods</topic><topic>Matrix decomposition</topic><topic>Minimization</topic><topic>Null space</topic><topic>Representations</topic><topic>Singular value decomposition</topic><topic>Sparse matrices</topic><topic>Streaming media</topic><topic>Subspace clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Qiangqiang</creatorcontrib><creatorcontrib>Yi, Shuangyan</creatorcontrib><creatorcontrib>Liang, Yongsheng</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Qiangqiang</au><au>Yi, Shuangyan</au><au>Liang, Yongsheng</au><au>Chen, Yongyong</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In recent years, low-rank representation (LRR) has received increasing attention on subspace clustering. Due to inevitable matrix inversion and singular value decomposition in each iteration, however, most of existing LRR algorithms may suffer from high computational complexity, and hence can not cope with the large-scale sample data commendably. To overcome this problem, in this paper, we propose a bilateral fast low-rank representation (BFLRR), which has a linear time complexity with respect to the number of samples. Specifically, we introduce the equivalent transformation method to remove the null spaces of both the columns and rows of the coefficient matrix so that a hypercompact coefficient matrix can be learned. Furthermore, the proposed BFLRR is embedded into a distributed framework as DFC-BFLRR to make it more efficient, which utilizes a combination of the global and local projection matrices. Extensive experiments are carried out on real datasets, and the results testify that the proposed methods not only perform faster-computing speed but also obtain favorable clustering accuracy in comparison with the competing methods among large-scale sample data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3207922</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4771-6105</orcidid><orcidid>https://orcid.org/0000-0003-1970-1993</orcidid><orcidid>https://orcid.org/0000-0002-0891-5577</orcidid><orcidid>https://orcid.org/0000-0002-3564-6042</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023-01, Vol.25, p.1-13
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2885649994
source IEEE Electronic Library (IEL)
subjects Algorithms
Clustering
Clustering algorithms
Complexity
distribute
Equivalence
equivalent transformation
fast low-rank
Iterative methods
Matrix decomposition
Minimization
Null space
Representations
Singular value decomposition
Sparse matrices
Streaming media
Subspace clustering
title Bilateral Fast Low-Rank Representation With Equivalent Transformation for Subspace Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilateral%20Fast%20Low-Rank%20Representation%20With%20Equivalent%20Transformation%20for%20Subspace%20Clustering&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Shen,%20Qiangqiang&rft.date=2023-01-01&rft.volume=25&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3207922&rft_dat=%3Cproquest_RIE%3E2885649994%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885649994&rft_id=info:pmid/&rft_ieee_id=9895324&rfr_iscdi=true