Kernel regression for errors-in-variables problems in the circular domain
We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We de...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2023-10, Vol.32 (4), p.1217-1237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1237 |
---|---|
container_issue | 4 |
container_start_page | 1217 |
container_title | Statistical methods & applications |
container_volume | 32 |
creator | Di Marzio, Marco Fensore, Stefania Taylor, Charles C. |
description | We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods. |
doi_str_mv | 10.1007/s10260-023-00687-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885592449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885592449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYPxI7R1TxqKjEBSRuVuKsS6o0KesGiX9PaJC4cZo5zMyuPsYuJVxLAHuTJKgcBCgtAHJnBRyxmcylFoWTb8cH74TKJJyys5Q2AFpro2ds-YTUYcsJ14QpNX3HY08ciXpKounEZ0lNWbWY-I76UbeJNx3fvyMPDYWhLYnX_bZsunN2Ess24cWvztnr_d3L4lGsnh-Wi9uVCLrI9wKzqF0GwclYRxOki0aFzBljsdZlERXWEa0ORufBSpvloFxV1blFAFdUVs_Z1bQ7_vMxYNr7TT9QN570yrksK5QxxZhSUypQnxJh9DtqtiV9eQn-B5mfkPkRmT8g8zCW9FRKY7hbI_1N_9P6Bv9Tbso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885592449</pqid></control><display><type>article</type><title>Kernel regression for errors-in-variables problems in the circular domain</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Di Marzio, Marco ; Fensore, Stefania ; Taylor, Charles C.</creator><creatorcontrib>Di Marzio, Marco ; Fensore, Stefania ; Taylor, Charles C.</creatorcontrib><description>We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-023-00687-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Chemistry and Earth Sciences ; Computer Science ; Economics ; Errors ; Estimators ; Finance ; Health Sciences ; Humanities ; Insurance ; Kernels ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Random variables ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Weighting functions</subject><ispartof>Statistical methods & applications, 2023-10, Vol.32 (4), p.1217-1237</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</citedby><cites>FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</cites><orcidid>0000-0002-5308-2586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-023-00687-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-023-00687-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Di Marzio, Marco</creatorcontrib><creatorcontrib>Fensore, Stefania</creatorcontrib><creatorcontrib>Taylor, Charles C.</creatorcontrib><title>Kernel regression for errors-in-variables problems in the circular domain</title><title>Statistical methods & applications</title><addtitle>Stat Methods Appl</addtitle><description>We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.</description><subject>Asymptotic properties</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Errors</subject><subject>Estimators</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Kernels</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Random variables</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Weighting functions</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYPxI7R1TxqKjEBSRuVuKsS6o0KesGiX9PaJC4cZo5zMyuPsYuJVxLAHuTJKgcBCgtAHJnBRyxmcylFoWTb8cH74TKJJyys5Q2AFpro2ds-YTUYcsJ14QpNX3HY08ciXpKounEZ0lNWbWY-I76UbeJNx3fvyMPDYWhLYnX_bZsunN2Ess24cWvztnr_d3L4lGsnh-Wi9uVCLrI9wKzqF0GwclYRxOki0aFzBljsdZlERXWEa0ORufBSpvloFxV1blFAFdUVs_Z1bQ7_vMxYNr7TT9QN570yrksK5QxxZhSUypQnxJh9DtqtiV9eQn-B5mfkPkRmT8g8zCW9FRKY7hbI_1N_9P6Bv9Tbso</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Di Marzio, Marco</creator><creator>Fensore, Stefania</creator><creator>Taylor, Charles C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5308-2586</orcidid></search><sort><creationdate>20231001</creationdate><title>Kernel regression for errors-in-variables problems in the circular domain</title><author>Di Marzio, Marco ; Fensore, Stefania ; Taylor, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Errors</topic><topic>Estimators</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Kernels</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Random variables</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marzio, Marco</creatorcontrib><creatorcontrib>Fensore, Stefania</creatorcontrib><creatorcontrib>Taylor, Charles C.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marzio, Marco</au><au>Fensore, Stefania</au><au>Taylor, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel regression for errors-in-variables problems in the circular domain</atitle><jtitle>Statistical methods & applications</jtitle><stitle>Stat Methods Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>1217</spage><epage>1237</epage><pages>1217-1237</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-023-00687-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5308-2586</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2510 |
ispartof | Statistical methods & applications, 2023-10, Vol.32 (4), p.1217-1237 |
issn | 1618-2510 1613-981X |
language | eng |
recordid | cdi_proquest_journals_2885592449 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Asymptotic properties Chemistry and Earth Sciences Computer Science Economics Errors Estimators Finance Health Sciences Humanities Insurance Kernels Law Management Mathematics and Statistics Medicine Original Paper Physics Random variables Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences Weighting functions |
title | Kernel regression for errors-in-variables problems in the circular domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20regression%20for%20errors-in-variables%20problems%20in%20the%20circular%20domain&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Di%20Marzio,%20Marco&rft.date=2023-10-01&rft.volume=32&rft.issue=4&rft.spage=1217&rft.epage=1237&rft.pages=1217-1237&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-023-00687-0&rft_dat=%3Cproquest_cross%3E2885592449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885592449&rft_id=info:pmid/&rfr_iscdi=true |