Kernel regression for errors-in-variables problems in the circular domain

We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods & applications 2023-10, Vol.32 (4), p.1217-1237
Hauptverfasser: Di Marzio, Marco, Fensore, Stefania, Taylor, Charles C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1237
container_issue 4
container_start_page 1217
container_title Statistical methods & applications
container_volume 32
creator Di Marzio, Marco
Fensore, Stefania
Taylor, Charles C.
description We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.
doi_str_mv 10.1007/s10260-023-00687-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885592449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885592449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYPxI7R1TxqKjEBSRuVuKsS6o0KesGiX9PaJC4cZo5zMyuPsYuJVxLAHuTJKgcBCgtAHJnBRyxmcylFoWTb8cH74TKJJyys5Q2AFpro2ds-YTUYcsJ14QpNX3HY08ciXpKounEZ0lNWbWY-I76UbeJNx3fvyMPDYWhLYnX_bZsunN2Ess24cWvztnr_d3L4lGsnh-Wi9uVCLrI9wKzqF0GwclYRxOki0aFzBljsdZlERXWEa0ORufBSpvloFxV1blFAFdUVs_Z1bQ7_vMxYNr7TT9QN570yrksK5QxxZhSUypQnxJh9DtqtiV9eQn-B5mfkPkRmT8g8zCW9FRKY7hbI_1N_9P6Bv9Tbso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885592449</pqid></control><display><type>article</type><title>Kernel regression for errors-in-variables problems in the circular domain</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Di Marzio, Marco ; Fensore, Stefania ; Taylor, Charles C.</creator><creatorcontrib>Di Marzio, Marco ; Fensore, Stefania ; Taylor, Charles C.</creatorcontrib><description>We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-023-00687-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Chemistry and Earth Sciences ; Computer Science ; Economics ; Errors ; Estimators ; Finance ; Health Sciences ; Humanities ; Insurance ; Kernels ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Random variables ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Weighting functions</subject><ispartof>Statistical methods &amp; applications, 2023-10, Vol.32 (4), p.1217-1237</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</citedby><cites>FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</cites><orcidid>0000-0002-5308-2586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-023-00687-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-023-00687-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Di Marzio, Marco</creatorcontrib><creatorcontrib>Fensore, Stefania</creatorcontrib><creatorcontrib>Taylor, Charles C.</creatorcontrib><title>Kernel regression for errors-in-variables problems in the circular domain</title><title>Statistical methods &amp; applications</title><addtitle>Stat Methods Appl</addtitle><description>We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.</description><subject>Asymptotic properties</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Errors</subject><subject>Estimators</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Kernels</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Random variables</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Weighting functions</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYPxI7R1TxqKjEBSRuVuKsS6o0KesGiX9PaJC4cZo5zMyuPsYuJVxLAHuTJKgcBCgtAHJnBRyxmcylFoWTb8cH74TKJJyys5Q2AFpro2ds-YTUYcsJ14QpNX3HY08ciXpKounEZ0lNWbWY-I76UbeJNx3fvyMPDYWhLYnX_bZsunN2Ess24cWvztnr_d3L4lGsnh-Wi9uVCLrI9wKzqF0GwclYRxOki0aFzBljsdZlERXWEa0ORufBSpvloFxV1blFAFdUVs_Z1bQ7_vMxYNr7TT9QN570yrksK5QxxZhSUypQnxJh9DtqtiV9eQn-B5mfkPkRmT8g8zCW9FRKY7hbI_1N_9P6Bv9Tbso</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Di Marzio, Marco</creator><creator>Fensore, Stefania</creator><creator>Taylor, Charles C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5308-2586</orcidid></search><sort><creationdate>20231001</creationdate><title>Kernel regression for errors-in-variables problems in the circular domain</title><author>Di Marzio, Marco ; Fensore, Stefania ; Taylor, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e5f3850c81fdf4c18f42c58447ed3a9f2edfe73c436c71756028bbd67e0089b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Errors</topic><topic>Estimators</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Kernels</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Random variables</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marzio, Marco</creatorcontrib><creatorcontrib>Fensore, Stefania</creatorcontrib><creatorcontrib>Taylor, Charles C.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marzio, Marco</au><au>Fensore, Stefania</au><au>Taylor, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel regression for errors-in-variables problems in the circular domain</atitle><jtitle>Statistical methods &amp; applications</jtitle><stitle>Stat Methods Appl</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>1217</spage><epage>1237</epage><pages>1217-1237</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>We study the problem of estimating a regression function when the predictor and/or the response are circular random variables in the presence of measurement errors. We propose estimators whose weight functions are deconvolution kernels defined according to the nature of the involved variables. We derive the asymptotic properties of the proposed estimators and consider possible generalizations and extensions. We provide some simulation results and a real data case study to illustrate and compare the proposed methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-023-00687-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5308-2586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2510
ispartof Statistical methods & applications, 2023-10, Vol.32 (4), p.1217-1237
issn 1618-2510
1613-981X
language eng
recordid cdi_proquest_journals_2885592449
source Springer Nature - Complete Springer Journals; Business Source Complete
subjects Asymptotic properties
Chemistry and Earth Sciences
Computer Science
Economics
Errors
Estimators
Finance
Health Sciences
Humanities
Insurance
Kernels
Law
Management
Mathematics and Statistics
Medicine
Original Paper
Physics
Random variables
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Weighting functions
title Kernel regression for errors-in-variables problems in the circular domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20regression%20for%20errors-in-variables%20problems%20in%20the%20circular%20domain&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Di%20Marzio,%20Marco&rft.date=2023-10-01&rft.volume=32&rft.issue=4&rft.spage=1217&rft.epage=1237&rft.pages=1217-1237&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-023-00687-0&rft_dat=%3Cproquest_cross%3E2885592449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885592449&rft_id=info:pmid/&rfr_iscdi=true