Notes on Super Projective Modules

Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2023-12, Vol.54 (4), p.1226-1238
Hauptverfasser: Morye, Archana S., Sarma Phukon, Aditya, Devichandrika, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 4
container_start_page 1226
container_title Indian journal of pure and applied mathematics
container_volume 54
creator Morye, Archana S.
Sarma Phukon, Aditya
Devichandrika, V.
description Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.
doi_str_mv 10.1007/s13226-022-00336-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885591660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885591660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bf7d61e7f114be07a02a201af9505112ea17ab9b6635b7bfb1d9a8202e02093b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcV19F7kyZpljL4gvEB6jokM7cyZWxq0gr-e6sV3Lm6Z3G-c-Fj7BjhDAHMeUYphOYgBAeQUvNyh83AGsVNqdXumAEtV6qq9tlBzg2AlmDtjJ3cx55yEdviaegoFY8pNrTqNx9U3MX1sKV8yPZqv8109Hvn7OXq8nlxw5cP17eLiyVfCQM9D7VZayRTI5aBwHgQXgD62ipQiII8Gh9s0FqqYEIdcG19JUAQCLAyyDk7nXa7FN8Hyr1r4pDa8aUTVaWURa1hbImptUox50S169LmzadPh-C-VbhJhRtVuB8VrhwhOUF5LLevlP6m_6G-AIrOXvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885591660</pqid></control><display><type>article</type><title>Notes on Super Projective Modules</title><source>Springer Nature - Complete Springer Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Morye, Archana S. ; Sarma Phukon, Aditya ; Devichandrika, V.</creator><creatorcontrib>Morye, Archana S. ; Sarma Phukon, Aditya ; Devichandrika, V.</creatorcontrib><description>Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-022-00336-4</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Modules ; Numerical Analysis ; Original Research</subject><ispartof>Indian journal of pure and applied mathematics, 2023-12, Vol.54 (4), p.1226-1238</ispartof><rights>The Indian National Science Academy 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bf7d61e7f114be07a02a201af9505112ea17ab9b6635b7bfb1d9a8202e02093b3</cites><orcidid>0000-0001-7010-6781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-022-00336-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-022-00336-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Morye, Archana S.</creatorcontrib><creatorcontrib>Sarma Phukon, Aditya</creatorcontrib><creatorcontrib>Devichandrika, V.</creatorcontrib><title>Notes on Super Projective Modules</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.</description><subject>Applications of Mathematics</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcV19F7kyZpljL4gvEB6jokM7cyZWxq0gr-e6sV3Lm6Z3G-c-Fj7BjhDAHMeUYphOYgBAeQUvNyh83AGsVNqdXumAEtV6qq9tlBzg2AlmDtjJ3cx55yEdviaegoFY8pNrTqNx9U3MX1sKV8yPZqv8109Hvn7OXq8nlxw5cP17eLiyVfCQM9D7VZayRTI5aBwHgQXgD62ipQiII8Gh9s0FqqYEIdcG19JUAQCLAyyDk7nXa7FN8Hyr1r4pDa8aUTVaWURa1hbImptUox50S169LmzadPh-C-VbhJhRtVuB8VrhwhOUF5LLevlP6m_6G-AIrOXvc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Morye, Archana S.</creator><creator>Sarma Phukon, Aditya</creator><creator>Devichandrika, V.</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7010-6781</orcidid></search><sort><creationdate>20231201</creationdate><title>Notes on Super Projective Modules</title><author>Morye, Archana S. ; Sarma Phukon, Aditya ; Devichandrika, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bf7d61e7f114be07a02a201af9505112ea17ab9b6635b7bfb1d9a8202e02093b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morye, Archana S.</creatorcontrib><creatorcontrib>Sarma Phukon, Aditya</creatorcontrib><creatorcontrib>Devichandrika, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morye, Archana S.</au><au>Sarma Phukon, Aditya</au><au>Devichandrika, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on Super Projective Modules</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>54</volume><issue>4</issue><spage>1226</spage><epage>1238</epage><pages>1226-1238</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-022-00336-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7010-6781</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-5588
ispartof Indian journal of pure and applied mathematics, 2023-12, Vol.54 (4), p.1226-1238
issn 0019-5588
0975-7465
language eng
recordid cdi_proquest_journals_2885591660
source Springer Nature - Complete Springer Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Applications of Mathematics
Fields (mathematics)
Mathematics
Mathematics and Statistics
Modules
Numerical Analysis
Original Research
title Notes on Super Projective Modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20Super%20Projective%20Modules&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Morye,%20Archana%20S.&rft.date=2023-12-01&rft.volume=54&rft.issue=4&rft.spage=1226&rft.epage=1238&rft.pages=1226-1238&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-022-00336-4&rft_dat=%3Cproquest_cross%3E2885591660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885591660&rft_id=info:pmid/&rfr_iscdi=true