Notes on Super Projective Modules
Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere an...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2023-12, Vol.54 (4), p.1226-1238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1238 |
---|---|
container_issue | 4 |
container_start_page | 1226 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 54 |
creator | Morye, Archana S. Sarma Phukon, Aditya Devichandrika, V. |
description | Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres. |
doi_str_mv | 10.1007/s13226-022-00336-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885591660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885591660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bf7d61e7f114be07a02a201af9505112ea17ab9b6635b7bfb1d9a8202e02093b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcV19F7kyZpljL4gvEB6jokM7cyZWxq0gr-e6sV3Lm6Z3G-c-Fj7BjhDAHMeUYphOYgBAeQUvNyh83AGsVNqdXumAEtV6qq9tlBzg2AlmDtjJ3cx55yEdviaegoFY8pNrTqNx9U3MX1sKV8yPZqv8109Hvn7OXq8nlxw5cP17eLiyVfCQM9D7VZayRTI5aBwHgQXgD62ipQiII8Gh9s0FqqYEIdcG19JUAQCLAyyDk7nXa7FN8Hyr1r4pDa8aUTVaWURa1hbImptUox50S169LmzadPh-C-VbhJhRtVuB8VrhwhOUF5LLevlP6m_6G-AIrOXvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885591660</pqid></control><display><type>article</type><title>Notes on Super Projective Modules</title><source>Springer Nature - Complete Springer Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Morye, Archana S. ; Sarma Phukon, Aditya ; Devichandrika, V.</creator><creatorcontrib>Morye, Archana S. ; Sarma Phukon, Aditya ; Devichandrika, V.</creatorcontrib><description>Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-022-00336-4</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Modules ; Numerical Analysis ; Original Research</subject><ispartof>Indian journal of pure and applied mathematics, 2023-12, Vol.54 (4), p.1226-1238</ispartof><rights>The Indian National Science Academy 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bf7d61e7f114be07a02a201af9505112ea17ab9b6635b7bfb1d9a8202e02093b3</cites><orcidid>0000-0001-7010-6781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-022-00336-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-022-00336-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Morye, Archana S.</creatorcontrib><creatorcontrib>Sarma Phukon, Aditya</creatorcontrib><creatorcontrib>Devichandrika, V.</creatorcontrib><title>Notes on Super Projective Modules</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.</description><subject>Applications of Mathematics</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcV19F7kyZpljL4gvEB6jokM7cyZWxq0gr-e6sV3Lm6Z3G-c-Fj7BjhDAHMeUYphOYgBAeQUvNyh83AGsVNqdXumAEtV6qq9tlBzg2AlmDtjJ3cx55yEdviaegoFY8pNrTqNx9U3MX1sKV8yPZqv8109Hvn7OXq8nlxw5cP17eLiyVfCQM9D7VZayRTI5aBwHgQXgD62ipQiII8Gh9s0FqqYEIdcG19JUAQCLAyyDk7nXa7FN8Hyr1r4pDa8aUTVaWURa1hbImptUox50S169LmzadPh-C-VbhJhRtVuB8VrhwhOUF5LLevlP6m_6G-AIrOXvc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Morye, Archana S.</creator><creator>Sarma Phukon, Aditya</creator><creator>Devichandrika, V.</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7010-6781</orcidid></search><sort><creationdate>20231201</creationdate><title>Notes on Super Projective Modules</title><author>Morye, Archana S. ; Sarma Phukon, Aditya ; Devichandrika, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bf7d61e7f114be07a02a201af9505112ea17ab9b6635b7bfb1d9a8202e02093b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morye, Archana S.</creatorcontrib><creatorcontrib>Sarma Phukon, Aditya</creatorcontrib><creatorcontrib>Devichandrika, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morye, Archana S.</au><au>Sarma Phukon, Aditya</au><au>Devichandrika, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on Super Projective Modules</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>54</volume><issue>4</issue><spage>1226</spage><epage>1238</epage><pages>1226-1238</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-022-00336-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7010-6781</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2023-12, Vol.54 (4), p.1226-1238 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_2885591660 |
source | Springer Nature - Complete Springer Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Applications of Mathematics Fields (mathematics) Mathematics Mathematics and Statistics Modules Numerical Analysis Original Research |
title | Notes on Super Projective Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20Super%20Projective%20Modules&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Morye,%20Archana%20S.&rft.date=2023-12-01&rft.volume=54&rft.issue=4&rft.spage=1226&rft.epage=1238&rft.pages=1226-1238&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-022-00336-4&rft_dat=%3Cproquest_cross%3E2885591660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885591660&rft_id=info:pmid/&rfr_iscdi=true |