Multivariate and regression models for directional data based on projected Pólya trees
Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate Pólya tree on R k and project it t...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2024-02, Vol.34 (1), Article 25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Statistics and computing |
container_volume | 34 |
creator | Nieto-Barajas, Luis E. |
description | Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate Pólya tree on
R
k
and project it to the unit hypersphere
S
k
to define a new Bayesian nonparametric model for directional data. We study the properties of the proposed model and in particular, concentrate on the implied conditional distributions of some directions given the others to define a directional–directional regression model. We also define a multivariate linear regression model with Pólya tree errors and project it to define a linear-directional regression model. We obtain the posterior characterisation of all models via their full conditional distributions. Metropolis-Hastings steps are required, where random walk proposal distributions are optimised with a novel adaptation scheme. We show the performance of our models with simulated and real datasets. |
doi_str_mv | 10.1007/s11222-023-10337-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885591373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885591373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185w-902344a578b8a74588f480c2a91433d4cfc576a18316e87ba6a48ea4bd103aef3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBn7BxRxUsqggOIo7WJN1WqtCl2SsV38Qn8GIYgceO0mt2Z1cwQcir4ueDcXiQhpJSMS8UEV8qy3R6ZCGMzVNbskwkvC86UsPqQHKW05FyIQukJebnfdkP7BrGFASmsA424iJhS26_pqg_YJdr0kYY2Yj3kJXQ0wAC0goSBZtIm9st8yuDx86N7BzpExHRMDhroEp78zil5vr56mt2y-cPN3exyzmrhzI6V2bHWYKyrHFhtnGu047WEUmilgq6b2tgChFOiQGcrKEA7BF2FHBOwUVNyNv7NNl63mAa_7Lcxu0xeOmdMmfOrzJIjq459ShEbv4ntCuK7F9x_F-jHAn22438K9LssUqMoZfJ6gfHv9T-qL9q_dMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885591373</pqid></control><display><type>article</type><title>Multivariate and regression models for directional data based on projected Pólya trees</title><source>Springer Nature - Complete Springer Journals</source><creator>Nieto-Barajas, Luis E.</creator><creatorcontrib>Nieto-Barajas, Luis E.</creatorcontrib><description>Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate Pólya tree on
R
k
and project it to the unit hypersphere
S
k
to define a new Bayesian nonparametric model for directional data. We study the properties of the proposed model and in particular, concentrate on the implied conditional distributions of some directions given the others to define a directional–directional regression model. We also define a multivariate linear regression model with Pólya tree errors and project it to define a linear-directional regression model. We obtain the posterior characterisation of all models via their full conditional distributions. Metropolis-Hastings steps are required, where random walk proposal distributions are optimised with a novel adaptation scheme. We show the performance of our models with simulated and real datasets.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-023-10337-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Hyperspheres ; Multivariate analysis ; Original Paper ; Probability and Statistics in Computer Science ; Random walk ; Regression models ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2024-02, Vol.34 (1), Article 25</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185w-902344a578b8a74588f480c2a91433d4cfc576a18316e87ba6a48ea4bd103aef3</cites><orcidid>0000-0002-0859-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-023-10337-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-023-10337-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nieto-Barajas, Luis E.</creatorcontrib><title>Multivariate and regression models for directional data based on projected Pólya trees</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate Pólya tree on
R
k
and project it to the unit hypersphere
S
k
to define a new Bayesian nonparametric model for directional data. We study the properties of the proposed model and in particular, concentrate on the implied conditional distributions of some directions given the others to define a directional–directional regression model. We also define a multivariate linear regression model with Pólya tree errors and project it to define a linear-directional regression model. We obtain the posterior characterisation of all models via their full conditional distributions. Metropolis-Hastings steps are required, where random walk proposal distributions are optimised with a novel adaptation scheme. We show the performance of our models with simulated and real datasets.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Hyperspheres</subject><subject>Multivariate analysis</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Random walk</subject><subject>Regression models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBn7BxRxUsqggOIo7WJN1WqtCl2SsV38Qn8GIYgceO0mt2Z1cwQcir4ueDcXiQhpJSMS8UEV8qy3R6ZCGMzVNbskwkvC86UsPqQHKW05FyIQukJebnfdkP7BrGFASmsA424iJhS26_pqg_YJdr0kYY2Yj3kJXQ0wAC0goSBZtIm9st8yuDx86N7BzpExHRMDhroEp78zil5vr56mt2y-cPN3exyzmrhzI6V2bHWYKyrHFhtnGu047WEUmilgq6b2tgChFOiQGcrKEA7BF2FHBOwUVNyNv7NNl63mAa_7Lcxu0xeOmdMmfOrzJIjq459ShEbv4ntCuK7F9x_F-jHAn22438K9LssUqMoZfJ6gfHv9T-qL9q_dMc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Nieto-Barajas, Luis E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0859-7679</orcidid></search><sort><creationdate>20240201</creationdate><title>Multivariate and regression models for directional data based on projected Pólya trees</title><author>Nieto-Barajas, Luis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185w-902344a578b8a74588f480c2a91433d4cfc576a18316e87ba6a48ea4bd103aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Hyperspheres</topic><topic>Multivariate analysis</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Random walk</topic><topic>Regression models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieto-Barajas, Luis E.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieto-Barajas, Luis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate and regression models for directional data based on projected Pólya trees</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><artnum>25</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate Pólya tree on
R
k
and project it to the unit hypersphere
S
k
to define a new Bayesian nonparametric model for directional data. We study the properties of the proposed model and in particular, concentrate on the implied conditional distributions of some directions given the others to define a directional–directional regression model. We also define a multivariate linear regression model with Pólya tree errors and project it to define a linear-directional regression model. We obtain the posterior characterisation of all models via their full conditional distributions. Metropolis-Hastings steps are required, where random walk proposal distributions are optimised with a novel adaptation scheme. We show the performance of our models with simulated and real datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-023-10337-w</doi><orcidid>https://orcid.org/0000-0002-0859-7679</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2024-02, Vol.34 (1), Article 25 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2885591373 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Computer Science Hyperspheres Multivariate analysis Original Paper Probability and Statistics in Computer Science Random walk Regression models Statistical Theory and Methods Statistics and Computing/Statistics Programs |
title | Multivariate and regression models for directional data based on projected Pólya trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20and%20regression%20models%20for%20directional%20data%20based%20on%20projected%20P%C3%B3lya%20trees&rft.jtitle=Statistics%20and%20computing&rft.au=Nieto-Barajas,%20Luis%20E.&rft.date=2024-02-01&rft.volume=34&rft.issue=1&rft.artnum=25&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-023-10337-w&rft_dat=%3Cproquest_cross%3E2885591373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885591373&rft_id=info:pmid/&rfr_iscdi=true |