A combined method for stability analysis of linear time invariant control systems based on Hermite‐Fujiwara matrix and Cholesky decomposition

In this paper, we have developed an integrative method for checking the stability of linear time‐invariant (LTI) systems as well as nonlinear continuous‐time ones. In our method, we first apply the iterative Faddeev–Leverrier algorithm to obtain the characteristic polynomial of the LTI system. Subse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2023-12, Vol.101 (12), p.7043-7052
Hauptverfasser: Fatoorehchi, Hooman, Ehrhardt, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7052
container_issue 12
container_start_page 7043
container_title Canadian journal of chemical engineering
container_volume 101
creator Fatoorehchi, Hooman
Ehrhardt, Matthias
description In this paper, we have developed an integrative method for checking the stability of linear time‐invariant (LTI) systems as well as nonlinear continuous‐time ones. In our method, we first apply the iterative Faddeev–Leverrier algorithm to obtain the characteristic polynomial of the LTI system. Subsequently, the associated Hermite‐Fujiwara matrix will be evaluated by a particularly efficient technique for the calculation of the Bézoutian matrices. The positive‐definiteness of the Hermite‐Fujiwara form, as the stability criterion, is next tested by performing the Cholesky decomposition. Our method is extended to assess the local stability of nonlinear continuous‐time systems with the help of the Jacobian matrix concept. The proposed method is demonstrated to approximately be 2.2 times faster than the classical Hurwitz algorithm in average, at least for matrices with dimensions less than 40, according to a performed central processing unit (CPU) time analysis. For the sake of illustration, four numerical examples are given, including dynamical models for a real‐world hydrolysis reactor and a well‐mixed bioreactor.
doi_str_mv 10.1002/cjce.24962
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885544913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885544913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-115038ba04c2bb659e0ad19217246611bb36da851b033b87955d7e7bafa842ed3</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsbnyDgTpia21yyLMVaoeBGwd1wMpOhGWcmNUnV2fkG-ow-ial1dTjw_R_n_AhdUjKjhLCbqq30jAmZsSM0oZLLhFD5fIwmhJAiEYSLU3TmfRtXRgSdoK85rmyvzKBr3OuwsTVurMM-gDKdCSOGAbrRG49tg7uIgcPB9Bqb4Q2cgSHE_BCc7bAffdC9xwp8lNkBr7TrTdA_n9_LXWvewQHuITjzEaU1Xmxsp_3LiGsdL9hab4Kxwzk6aaDz-uJ_TtHT8vZxsUrWD3f3i_k6qVgqQ0JpSnihgIiKKZWlUhOoqWQ0ZyLLKFWKZzUUKVWEc1XkMk3rXOcKGigE0zWfoquDd-vs6077ULZ25-KvvmRFkaZCSMojdX2gKme9d7opt8704MaSknJfeLkvvPwrnP8CEF53dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885544913</pqid></control><display><type>article</type><title>A combined method for stability analysis of linear time invariant control systems based on Hermite‐Fujiwara matrix and Cholesky decomposition</title><source>Access via Wiley Online Library</source><creator>Fatoorehchi, Hooman ; Ehrhardt, Matthias</creator><creatorcontrib>Fatoorehchi, Hooman ; Ehrhardt, Matthias</creatorcontrib><description>In this paper, we have developed an integrative method for checking the stability of linear time‐invariant (LTI) systems as well as nonlinear continuous‐time ones. In our method, we first apply the iterative Faddeev–Leverrier algorithm to obtain the characteristic polynomial of the LTI system. Subsequently, the associated Hermite‐Fujiwara matrix will be evaluated by a particularly efficient technique for the calculation of the Bézoutian matrices. The positive‐definiteness of the Hermite‐Fujiwara form, as the stability criterion, is next tested by performing the Cholesky decomposition. Our method is extended to assess the local stability of nonlinear continuous‐time systems with the help of the Jacobian matrix concept. The proposed method is demonstrated to approximately be 2.2 times faster than the classical Hurwitz algorithm in average, at least for matrices with dimensions less than 40, according to a performed central processing unit (CPU) time analysis. For the sake of illustration, four numerical examples are given, including dynamical models for a real‐world hydrolysis reactor and a well‐mixed bioreactor.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24962</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Bioreactors ; Central processing units ; CPUs ; Decomposition ; Dynamic models ; Invariants ; Iterative methods ; Jacobi matrix method ; Jacobian matrix ; Mathematical analysis ; Polynomials ; Stability analysis ; Stability criteria</subject><ispartof>Canadian journal of chemical engineering, 2023-12, Vol.101 (12), p.7043-7052</ispartof><rights>2023 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-115038ba04c2bb659e0ad19217246611bb36da851b033b87955d7e7bafa842ed3</citedby><cites>FETCH-LOGICAL-c259t-115038ba04c2bb659e0ad19217246611bb36da851b033b87955d7e7bafa842ed3</cites><orcidid>0000-0002-7106-7494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Fatoorehchi, Hooman</creatorcontrib><creatorcontrib>Ehrhardt, Matthias</creatorcontrib><title>A combined method for stability analysis of linear time invariant control systems based on Hermite‐Fujiwara matrix and Cholesky decomposition</title><title>Canadian journal of chemical engineering</title><description>In this paper, we have developed an integrative method for checking the stability of linear time‐invariant (LTI) systems as well as nonlinear continuous‐time ones. In our method, we first apply the iterative Faddeev–Leverrier algorithm to obtain the characteristic polynomial of the LTI system. Subsequently, the associated Hermite‐Fujiwara matrix will be evaluated by a particularly efficient technique for the calculation of the Bézoutian matrices. The positive‐definiteness of the Hermite‐Fujiwara form, as the stability criterion, is next tested by performing the Cholesky decomposition. Our method is extended to assess the local stability of nonlinear continuous‐time systems with the help of the Jacobian matrix concept. The proposed method is demonstrated to approximately be 2.2 times faster than the classical Hurwitz algorithm in average, at least for matrices with dimensions less than 40, according to a performed central processing unit (CPU) time analysis. For the sake of illustration, four numerical examples are given, including dynamical models for a real‐world hydrolysis reactor and a well‐mixed bioreactor.</description><subject>Algorithms</subject><subject>Bioreactors</subject><subject>Central processing units</subject><subject>CPUs</subject><subject>Decomposition</subject><subject>Dynamic models</subject><subject>Invariants</subject><subject>Iterative methods</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUhoMoWKsbnyDgTpia21yyLMVaoeBGwd1wMpOhGWcmNUnV2fkG-ow-ial1dTjw_R_n_AhdUjKjhLCbqq30jAmZsSM0oZLLhFD5fIwmhJAiEYSLU3TmfRtXRgSdoK85rmyvzKBr3OuwsTVurMM-gDKdCSOGAbrRG49tg7uIgcPB9Bqb4Q2cgSHE_BCc7bAffdC9xwp8lNkBr7TrTdA_n9_LXWvewQHuITjzEaU1Xmxsp_3LiGsdL9hab4Kxwzk6aaDz-uJ_TtHT8vZxsUrWD3f3i_k6qVgqQ0JpSnihgIiKKZWlUhOoqWQ0ZyLLKFWKZzUUKVWEc1XkMk3rXOcKGigE0zWfoquDd-vs6077ULZ25-KvvmRFkaZCSMojdX2gKme9d7opt8704MaSknJfeLkvvPwrnP8CEF53dw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Fatoorehchi, Hooman</creator><creator>Ehrhardt, Matthias</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7106-7494</orcidid></search><sort><creationdate>202312</creationdate><title>A combined method for stability analysis of linear time invariant control systems based on Hermite‐Fujiwara matrix and Cholesky decomposition</title><author>Fatoorehchi, Hooman ; Ehrhardt, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-115038ba04c2bb659e0ad19217246611bb36da851b033b87955d7e7bafa842ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bioreactors</topic><topic>Central processing units</topic><topic>CPUs</topic><topic>Decomposition</topic><topic>Dynamic models</topic><topic>Invariants</topic><topic>Iterative methods</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatoorehchi, Hooman</creatorcontrib><creatorcontrib>Ehrhardt, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatoorehchi, Hooman</au><au>Ehrhardt, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined method for stability analysis of linear time invariant control systems based on Hermite‐Fujiwara matrix and Cholesky decomposition</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2023-12</date><risdate>2023</risdate><volume>101</volume><issue>12</issue><spage>7043</spage><epage>7052</epage><pages>7043-7052</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>In this paper, we have developed an integrative method for checking the stability of linear time‐invariant (LTI) systems as well as nonlinear continuous‐time ones. In our method, we first apply the iterative Faddeev–Leverrier algorithm to obtain the characteristic polynomial of the LTI system. Subsequently, the associated Hermite‐Fujiwara matrix will be evaluated by a particularly efficient technique for the calculation of the Bézoutian matrices. The positive‐definiteness of the Hermite‐Fujiwara form, as the stability criterion, is next tested by performing the Cholesky decomposition. Our method is extended to assess the local stability of nonlinear continuous‐time systems with the help of the Jacobian matrix concept. The proposed method is demonstrated to approximately be 2.2 times faster than the classical Hurwitz algorithm in average, at least for matrices with dimensions less than 40, according to a performed central processing unit (CPU) time analysis. For the sake of illustration, four numerical examples are given, including dynamical models for a real‐world hydrolysis reactor and a well‐mixed bioreactor.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cjce.24962</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7106-7494</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2023-12, Vol.101 (12), p.7043-7052
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2885544913
source Access via Wiley Online Library
subjects Algorithms
Bioreactors
Central processing units
CPUs
Decomposition
Dynamic models
Invariants
Iterative methods
Jacobi matrix method
Jacobian matrix
Mathematical analysis
Polynomials
Stability analysis
Stability criteria
title A combined method for stability analysis of linear time invariant control systems based on Hermite‐Fujiwara matrix and Cholesky decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20method%20for%20stability%20analysis%20of%20linear%20time%20invariant%20control%20systems%20based%20on%20Hermite%E2%80%90Fujiwara%20matrix%20and%20Cholesky%20decomposition&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Fatoorehchi,%20Hooman&rft.date=2023-12&rft.volume=101&rft.issue=12&rft.spage=7043&rft.epage=7052&rft.pages=7043-7052&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24962&rft_dat=%3Cproquest_cross%3E2885544913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885544913&rft_id=info:pmid/&rfr_iscdi=true