Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models

This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers & applications 2023-10, Vol.45 (10), p.647-659
Hauptverfasser: Subashini, N. J., Venkatesh, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 10
container_start_page 647
container_title International journal of computers & applications
container_volume 45
creator Subashini, N. J.
Venkatesh, K.
description This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.
doi_str_mv 10.1080/1206212X.2023.2262786
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2885392638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885392638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-643c9701b94e4c3f3429178d6562323781847b8c87f37ad44db61384d23959bc3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhk1poGmaRwgIevZWGsmS3FNDaJpCQi8N5CZkabxRKksbyZuy5OXjzabXnmZgvv8f-JrmjNEVo5p-YUAlMLhbAQW-ApCgtHzXHLMeulZRJd4v-8K0e-hD87HWB0qFAqmPm-ebbZzDlL2NxCNuSERbUkhrMuZC3H3JKTjyJ_iEO-JDRVuRbAr64OaQ09eFf8Ji168JtPO2IKkY8fVKbFznEub7qRKbPMFUcRoikuUfxvqpORptrHj6Nk-a28vvvy-u2utfP35enF-3DiibWym46xVlQy9QOD5yAT1T2stOAgeuNNNCDdppNXJlvRB-kIxr4YH3XT84ftJ8PvRuSn7cYp3NQ96WtLw0oHXHe5BcL1R3oFzJtRYczaaEyZadYdTsPZt_ns3es3nzvOS-HXIhLcom-zeX6M1sdzGXsdjkQjX8_xUvoz6F1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885392638</pqid></control><display><type>article</type><title>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</title><source>Taylor &amp; Francis Journals Complete</source><creator>Subashini, N. J. ; Venkatesh, K.</creator><creatorcontrib>Subashini, N. J. ; Venkatesh, K.</creatorcontrib><description>This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.</description><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.1080/1206212X.2023.2262786</identifier><language>eng</language><publisher>Calgary: Taylor &amp; Francis</publisher><subject>Accuracy ; Algorithms ; Chronic kidney disease ; Computers ; Datasets ; Deep learning ; Diagnosis ; Kidney diseases ; LASSO ; Medical diagnosis ; Model accuracy ; Multimodal deep learning ; Relief ; SMOTEENN ; Software</subject><ispartof>International journal of computers &amp; applications, 2023-10, Vol.45 (10), p.647-659</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-643c9701b94e4c3f3429178d6562323781847b8c87f37ad44db61384d23959bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1206212X.2023.2262786$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1206212X.2023.2262786$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Subashini, N. J.</creatorcontrib><creatorcontrib>Venkatesh, K.</creatorcontrib><title>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</title><title>International journal of computers &amp; applications</title><description>This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Chronic kidney disease</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Kidney diseases</subject><subject>LASSO</subject><subject>Medical diagnosis</subject><subject>Model accuracy</subject><subject>Multimodal deep learning</subject><subject>Relief</subject><subject>SMOTEENN</subject><subject>Software</subject><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhk1poGmaRwgIevZWGsmS3FNDaJpCQi8N5CZkabxRKksbyZuy5OXjzabXnmZgvv8f-JrmjNEVo5p-YUAlMLhbAQW-ApCgtHzXHLMeulZRJd4v-8K0e-hD87HWB0qFAqmPm-ebbZzDlL2NxCNuSERbUkhrMuZC3H3JKTjyJ_iEO-JDRVuRbAr64OaQ09eFf8Ji168JtPO2IKkY8fVKbFznEub7qRKbPMFUcRoikuUfxvqpORptrHj6Nk-a28vvvy-u2utfP35enF-3DiibWym46xVlQy9QOD5yAT1T2stOAgeuNNNCDdppNXJlvRB-kIxr4YH3XT84ftJ8PvRuSn7cYp3NQ96WtLw0oHXHe5BcL1R3oFzJtRYczaaEyZadYdTsPZt_ns3es3nzvOS-HXIhLcom-zeX6M1sdzGXsdjkQjX8_xUvoz6F1Q</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Subashini, N. J.</creator><creator>Venkatesh, K.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231003</creationdate><title>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</title><author>Subashini, N. J. ; Venkatesh, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-643c9701b94e4c3f3429178d6562323781847b8c87f37ad44db61384d23959bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Chronic kidney disease</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Kidney diseases</topic><topic>LASSO</topic><topic>Medical diagnosis</topic><topic>Model accuracy</topic><topic>Multimodal deep learning</topic><topic>Relief</topic><topic>SMOTEENN</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subashini, N. J.</creatorcontrib><creatorcontrib>Venkatesh, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computers &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subashini, N. J.</au><au>Venkatesh, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</atitle><jtitle>International journal of computers &amp; applications</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>45</volume><issue>10</issue><spage>647</spage><epage>659</epage><pages>647-659</pages><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.</abstract><cop>Calgary</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/1206212X.2023.2262786</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1206-212X
ispartof International journal of computers & applications, 2023-10, Vol.45 (10), p.647-659
issn 1206-212X
1925-7074
language eng
recordid cdi_proquest_journals_2885392638
source Taylor & Francis Journals Complete
subjects Accuracy
Algorithms
Chronic kidney disease
Computers
Datasets
Deep learning
Diagnosis
Kidney diseases
LASSO
Medical diagnosis
Model accuracy
Multimodal deep learning
Relief
SMOTEENN
Software
title Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20deep%20learning%20for%20chronic%20kidney%20disease%20prediction:%20leveraging%20feature%20selection%20algorithms%20and%20ensemble%20models&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Subashini,%20N.%20J.&rft.date=2023-10-03&rft.volume=45&rft.issue=10&rft.spage=647&rft.epage=659&rft.pages=647-659&rft.issn=1206-212X&rft.eissn=1925-7074&rft_id=info:doi/10.1080/1206212X.2023.2262786&rft_dat=%3Cproquest_infor%3E2885392638%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885392638&rft_id=info:pmid/&rfr_iscdi=true