Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models
This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMO...
Gespeichert in:
Veröffentlicht in: | International journal of computers & applications 2023-10, Vol.45 (10), p.647-659 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 10 |
container_start_page | 647 |
container_title | International journal of computers & applications |
container_volume | 45 |
creator | Subashini, N. J. Venkatesh, K. |
description | This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems. |
doi_str_mv | 10.1080/1206212X.2023.2262786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2885392638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885392638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-643c9701b94e4c3f3429178d6562323781847b8c87f37ad44db61384d23959bc3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhk1poGmaRwgIevZWGsmS3FNDaJpCQi8N5CZkabxRKksbyZuy5OXjzabXnmZgvv8f-JrmjNEVo5p-YUAlMLhbAQW-ApCgtHzXHLMeulZRJd4v-8K0e-hD87HWB0qFAqmPm-ebbZzDlL2NxCNuSERbUkhrMuZC3H3JKTjyJ_iEO-JDRVuRbAr64OaQ09eFf8Ji168JtPO2IKkY8fVKbFznEub7qRKbPMFUcRoikuUfxvqpORptrHj6Nk-a28vvvy-u2utfP35enF-3DiibWym46xVlQy9QOD5yAT1T2stOAgeuNNNCDdppNXJlvRB-kIxr4YH3XT84ftJ8PvRuSn7cYp3NQ96WtLw0oHXHe5BcL1R3oFzJtRYczaaEyZadYdTsPZt_ns3es3nzvOS-HXIhLcom-zeX6M1sdzGXsdjkQjX8_xUvoz6F1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885392638</pqid></control><display><type>article</type><title>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</title><source>Taylor & Francis Journals Complete</source><creator>Subashini, N. J. ; Venkatesh, K.</creator><creatorcontrib>Subashini, N. J. ; Venkatesh, K.</creatorcontrib><description>This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.</description><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.1080/1206212X.2023.2262786</identifier><language>eng</language><publisher>Calgary: Taylor & Francis</publisher><subject>Accuracy ; Algorithms ; Chronic kidney disease ; Computers ; Datasets ; Deep learning ; Diagnosis ; Kidney diseases ; LASSO ; Medical diagnosis ; Model accuracy ; Multimodal deep learning ; Relief ; SMOTEENN ; Software</subject><ispartof>International journal of computers & applications, 2023-10, Vol.45 (10), p.647-659</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-643c9701b94e4c3f3429178d6562323781847b8c87f37ad44db61384d23959bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1206212X.2023.2262786$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1206212X.2023.2262786$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Subashini, N. J.</creatorcontrib><creatorcontrib>Venkatesh, K.</creatorcontrib><title>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</title><title>International journal of computers & applications</title><description>This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Chronic kidney disease</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Kidney diseases</subject><subject>LASSO</subject><subject>Medical diagnosis</subject><subject>Model accuracy</subject><subject>Multimodal deep learning</subject><subject>Relief</subject><subject>SMOTEENN</subject><subject>Software</subject><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhk1poGmaRwgIevZWGsmS3FNDaJpCQi8N5CZkabxRKksbyZuy5OXjzabXnmZgvv8f-JrmjNEVo5p-YUAlMLhbAQW-ApCgtHzXHLMeulZRJd4v-8K0e-hD87HWB0qFAqmPm-ebbZzDlL2NxCNuSERbUkhrMuZC3H3JKTjyJ_iEO-JDRVuRbAr64OaQ09eFf8Ji168JtPO2IKkY8fVKbFznEub7qRKbPMFUcRoikuUfxvqpORptrHj6Nk-a28vvvy-u2utfP35enF-3DiibWym46xVlQy9QOD5yAT1T2stOAgeuNNNCDdppNXJlvRB-kIxr4YH3XT84ftJ8PvRuSn7cYp3NQ96WtLw0oHXHe5BcL1R3oFzJtRYczaaEyZadYdTsPZt_ns3es3nzvOS-HXIhLcom-zeX6M1sdzGXsdjkQjX8_xUvoz6F1Q</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Subashini, N. J.</creator><creator>Venkatesh, K.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231003</creationdate><title>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</title><author>Subashini, N. J. ; Venkatesh, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-643c9701b94e4c3f3429178d6562323781847b8c87f37ad44db61384d23959bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Chronic kidney disease</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Kidney diseases</topic><topic>LASSO</topic><topic>Medical diagnosis</topic><topic>Model accuracy</topic><topic>Multimodal deep learning</topic><topic>Relief</topic><topic>SMOTEENN</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subashini, N. J.</creatorcontrib><creatorcontrib>Venkatesh, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computers & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subashini, N. J.</au><au>Venkatesh, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models</atitle><jtitle>International journal of computers & applications</jtitle><date>2023-10-03</date><risdate>2023</risdate><volume>45</volume><issue>10</issue><spage>647</spage><epage>659</epage><pages>647-659</pages><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>This research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.</abstract><cop>Calgary</cop><pub>Taylor & Francis</pub><doi>10.1080/1206212X.2023.2262786</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1206-212X |
ispartof | International journal of computers & applications, 2023-10, Vol.45 (10), p.647-659 |
issn | 1206-212X 1925-7074 |
language | eng |
recordid | cdi_proquest_journals_2885392638 |
source | Taylor & Francis Journals Complete |
subjects | Accuracy Algorithms Chronic kidney disease Computers Datasets Deep learning Diagnosis Kidney diseases LASSO Medical diagnosis Model accuracy Multimodal deep learning Relief SMOTEENN Software |
title | Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20deep%20learning%20for%20chronic%20kidney%20disease%20prediction:%20leveraging%20feature%20selection%20algorithms%20and%20ensemble%20models&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Subashini,%20N.%20J.&rft.date=2023-10-03&rft.volume=45&rft.issue=10&rft.spage=647&rft.epage=659&rft.pages=647-659&rft.issn=1206-212X&rft.eissn=1925-7074&rft_id=info:doi/10.1080/1206212X.2023.2262786&rft_dat=%3Cproquest_infor%3E2885392638%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885392638&rft_id=info:pmid/&rfr_iscdi=true |