Learning to Discover Skills through Guidance

In the field of unsupervised skill discovery (USD), a major challenge is limited exploration, primarily due to substantial penalties when skills deviate from their initial trajectories. To enhance exploration, recent methodologies employ auxiliary rewards to maximize the epistemic uncertainty or ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Kim, Hyunseung, Lee, Byungkun, Lee, Hojoon, Hwang, Dongyoon, Park, Sejik, Kyushik Min, Choo, Jaegul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kim, Hyunseung
Lee, Byungkun
Lee, Hojoon
Hwang, Dongyoon
Park, Sejik
Kyushik Min
Choo, Jaegul
description In the field of unsupervised skill discovery (USD), a major challenge is limited exploration, primarily due to substantial penalties when skills deviate from their initial trajectories. To enhance exploration, recent methodologies employ auxiliary rewards to maximize the epistemic uncertainty or entropy of states. However, we have identified that the effectiveness of these rewards declines as the environmental complexity rises. Therefore, we present a novel USD algorithm, skill discovery with guidance (DISCO-DANCE), which (1) selects the guide skill that possesses the highest potential to reach unexplored states, (2) guides other skills to follow guide skill, then (3) the guided skills are dispersed to maximize their discriminability in unexplored states. Empirical evaluation demonstrates that DISCO-DANCE outperforms other USD baselines in challenging environments, including two navigation benchmarks and a continuous control benchmark. Qualitative visualizations and code of DISCO-DANCE are available at https://mynsng.github.io/discodance.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2885380848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885380848</sourcerecordid><originalsourceid>FETCH-proquest_journals_28853808483</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8UlNLMrLzEtXKMlXcMksTs4vSy1SCM7OzMkpVijJKMovTc9QcC_NTEnMS07lYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwsLU2MLAwsTC2PiVAEAfhwxog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885380848</pqid></control><display><type>article</type><title>Learning to Discover Skills through Guidance</title><source>Free E- Journals</source><creator>Kim, Hyunseung ; Lee, Byungkun ; Lee, Hojoon ; Hwang, Dongyoon ; Park, Sejik ; Kyushik Min ; Choo, Jaegul</creator><creatorcontrib>Kim, Hyunseung ; Lee, Byungkun ; Lee, Hojoon ; Hwang, Dongyoon ; Park, Sejik ; Kyushik Min ; Choo, Jaegul</creatorcontrib><description>In the field of unsupervised skill discovery (USD), a major challenge is limited exploration, primarily due to substantial penalties when skills deviate from their initial trajectories. To enhance exploration, recent methodologies employ auxiliary rewards to maximize the epistemic uncertainty or entropy of states. However, we have identified that the effectiveness of these rewards declines as the environmental complexity rises. Therefore, we present a novel USD algorithm, skill discovery with guidance (DISCO-DANCE), which (1) selects the guide skill that possesses the highest potential to reach unexplored states, (2) guides other skills to follow guide skill, then (3) the guided skills are dispersed to maximize their discriminability in unexplored states. Empirical evaluation demonstrates that DISCO-DANCE outperforms other USD baselines in challenging environments, including two navigation benchmarks and a continuous control benchmark. Qualitative visualizations and code of DISCO-DANCE are available at https://mynsng.github.io/discodance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Benchmarks ; Dance ; Skills</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kim, Hyunseung</creatorcontrib><creatorcontrib>Lee, Byungkun</creatorcontrib><creatorcontrib>Lee, Hojoon</creatorcontrib><creatorcontrib>Hwang, Dongyoon</creatorcontrib><creatorcontrib>Park, Sejik</creatorcontrib><creatorcontrib>Kyushik Min</creatorcontrib><creatorcontrib>Choo, Jaegul</creatorcontrib><title>Learning to Discover Skills through Guidance</title><title>arXiv.org</title><description>In the field of unsupervised skill discovery (USD), a major challenge is limited exploration, primarily due to substantial penalties when skills deviate from their initial trajectories. To enhance exploration, recent methodologies employ auxiliary rewards to maximize the epistemic uncertainty or entropy of states. However, we have identified that the effectiveness of these rewards declines as the environmental complexity rises. Therefore, we present a novel USD algorithm, skill discovery with guidance (DISCO-DANCE), which (1) selects the guide skill that possesses the highest potential to reach unexplored states, (2) guides other skills to follow guide skill, then (3) the guided skills are dispersed to maximize their discriminability in unexplored states. Empirical evaluation demonstrates that DISCO-DANCE outperforms other USD baselines in challenging environments, including two navigation benchmarks and a continuous control benchmark. Qualitative visualizations and code of DISCO-DANCE are available at https://mynsng.github.io/discodance.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Dance</subject><subject>Skills</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8UlNLMrLzEtXKMlXcMksTs4vSy1SCM7OzMkpVijJKMovTc9QcC_NTEnMS07lYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwsLU2MLAwsTC2PiVAEAfhwxog</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kim, Hyunseung</creator><creator>Lee, Byungkun</creator><creator>Lee, Hojoon</creator><creator>Hwang, Dongyoon</creator><creator>Park, Sejik</creator><creator>Kyushik Min</creator><creator>Choo, Jaegul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231101</creationdate><title>Learning to Discover Skills through Guidance</title><author>Kim, Hyunseung ; Lee, Byungkun ; Lee, Hojoon ; Hwang, Dongyoon ; Park, Sejik ; Kyushik Min ; Choo, Jaegul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28853808483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Dance</topic><topic>Skills</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyunseung</creatorcontrib><creatorcontrib>Lee, Byungkun</creatorcontrib><creatorcontrib>Lee, Hojoon</creatorcontrib><creatorcontrib>Hwang, Dongyoon</creatorcontrib><creatorcontrib>Park, Sejik</creatorcontrib><creatorcontrib>Kyushik Min</creatorcontrib><creatorcontrib>Choo, Jaegul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyunseung</au><au>Lee, Byungkun</au><au>Lee, Hojoon</au><au>Hwang, Dongyoon</au><au>Park, Sejik</au><au>Kyushik Min</au><au>Choo, Jaegul</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning to Discover Skills through Guidance</atitle><jtitle>arXiv.org</jtitle><date>2023-11-01</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In the field of unsupervised skill discovery (USD), a major challenge is limited exploration, primarily due to substantial penalties when skills deviate from their initial trajectories. To enhance exploration, recent methodologies employ auxiliary rewards to maximize the epistemic uncertainty or entropy of states. However, we have identified that the effectiveness of these rewards declines as the environmental complexity rises. Therefore, we present a novel USD algorithm, skill discovery with guidance (DISCO-DANCE), which (1) selects the guide skill that possesses the highest potential to reach unexplored states, (2) guides other skills to follow guide skill, then (3) the guided skills are dispersed to maximize their discriminability in unexplored states. Empirical evaluation demonstrates that DISCO-DANCE outperforms other USD baselines in challenging environments, including two navigation benchmarks and a continuous control benchmark. Qualitative visualizations and code of DISCO-DANCE are available at https://mynsng.github.io/discodance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2885380848
source Free E- Journals
subjects Algorithms
Benchmarks
Dance
Skills
title Learning to Discover Skills through Guidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20to%20Discover%20Skills%20through%20Guidance&rft.jtitle=arXiv.org&rft.au=Kim,%20Hyunseung&rft.date=2023-11-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2885380848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885380848&rft_id=info:pmid/&rfr_iscdi=true