Large covariance estimation using a factor model with common and group-specific factors
This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2023-12, Vol.42 (8), p.2217-2248 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2248 |
---|---|
container_issue | 8 |
container_start_page | 2217 |
container_title | Journal of forecasting |
container_volume | 42 |
creator | Shi, Yafeng |
description | This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization. |
doi_str_mv | 10.1002/for.3006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885374833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885374833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-178ed57e538c62cbe845b9a41c6919bccb2b3f0a33346dae357634b8c9987c913</originalsourceid><addsrcrecordid>eNpF0E1LwzAYB_AgCs4p-BECXrx0Jn3avBxl6BQGXhS9lfRpOjPWpiat4rc3YwNPz-X3vP0JueZswRnL71ofFsCYOCEzzrTOOPCPUzJjuZSZEBrOyUWMW8aYVDyfkfe1CRtL0X-b4EyPlto4us6Mzvd0iq7fUENbg6MPtPON3dEfN34m33UJmL6hm-CnIYuDRdc6PNp4Sc5as4v26ljn5O3x4XX5lK1fVs_L-3WGwMSYcalsU0pbgkKRY21VUdbaFByF5rpGrPMaWmYAoBCNsVBKAUWtUGslUXOYk5vD3CH4ryndXm39FPq0ssqVKkEWKvXOye1BYfAxBttWQ0hPht-Ks2ofW5Viq_axJUoP1KLvXfyHSnLJAUoFfz4Bapg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885374833</pqid></control><display><type>article</type><title>Large covariance estimation using a factor model with common and group-specific factors</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Shi, Yafeng</creator><creatorcontrib>Shi, Yafeng</creatorcontrib><description>This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.3006</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Matrices ; Optimization</subject><ispartof>Journal of forecasting, 2023-12, Vol.42 (8), p.2217-2248</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-178ed57e538c62cbe845b9a41c6919bccb2b3f0a33346dae357634b8c9987c913</cites><orcidid>0000-0001-8114-5508 ; 0000-0002-3781-7642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Yafeng</creatorcontrib><title>Large covariance estimation using a factor model with common and group-specific factors</title><title>Journal of forecasting</title><description>This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.</description><subject>Matrices</subject><subject>Optimization</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LwzAYB_AgCs4p-BECXrx0Jn3avBxl6BQGXhS9lfRpOjPWpiat4rc3YwNPz-X3vP0JueZswRnL71ofFsCYOCEzzrTOOPCPUzJjuZSZEBrOyUWMW8aYVDyfkfe1CRtL0X-b4EyPlto4us6Mzvd0iq7fUENbg6MPtPON3dEfN34m33UJmL6hm-CnIYuDRdc6PNp4Sc5as4v26ljn5O3x4XX5lK1fVs_L-3WGwMSYcalsU0pbgkKRY21VUdbaFByF5rpGrPMaWmYAoBCNsVBKAUWtUGslUXOYk5vD3CH4ryndXm39FPq0ssqVKkEWKvXOye1BYfAxBttWQ0hPht-Ks2ofW5Viq_axJUoP1KLvXfyHSnLJAUoFfz4Bapg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Shi, Yafeng</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-8114-5508</orcidid><orcidid>https://orcid.org/0000-0002-3781-7642</orcidid></search><sort><creationdate>20231201</creationdate><title>Large covariance estimation using a factor model with common and group-specific factors</title><author>Shi, Yafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-178ed57e538c62cbe845b9a41c6919bccb2b3f0a33346dae357634b8c9987c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Matrices</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yafeng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large covariance estimation using a factor model with common and group-specific factors</atitle><jtitle>Journal of forecasting</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>2217</spage><epage>2248</epage><pages>2217-2248</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.3006</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-8114-5508</orcidid><orcidid>https://orcid.org/0000-0002-3781-7642</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2023-12, Vol.42 (8), p.2217-2248 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_journals_2885374833 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Matrices Optimization |
title | Large covariance estimation using a factor model with common and group-specific factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20covariance%20estimation%20using%20a%20factor%20model%20with%20common%20and%20group-specific%20factors&rft.jtitle=Journal%20of%20forecasting&rft.au=Shi,%20Yafeng&rft.date=2023-12-01&rft.volume=42&rft.issue=8&rft.spage=2217&rft.epage=2248&rft.pages=2217-2248&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.3006&rft_dat=%3Cproquest_cross%3E2885374833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885374833&rft_id=info:pmid/&rfr_iscdi=true |