Large covariance estimation using a factor model with common and group-specific factors

This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2023-12, Vol.42 (8), p.2217-2248
1. Verfasser: Shi, Yafeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2248
container_issue 8
container_start_page 2217
container_title Journal of forecasting
container_volume 42
creator Shi, Yafeng
description This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.
doi_str_mv 10.1002/for.3006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2885374833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885374833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-178ed57e538c62cbe845b9a41c6919bccb2b3f0a33346dae357634b8c9987c913</originalsourceid><addsrcrecordid>eNpF0E1LwzAYB_AgCs4p-BECXrx0Jn3avBxl6BQGXhS9lfRpOjPWpiat4rc3YwNPz-X3vP0JueZswRnL71ofFsCYOCEzzrTOOPCPUzJjuZSZEBrOyUWMW8aYVDyfkfe1CRtL0X-b4EyPlto4us6Mzvd0iq7fUENbg6MPtPON3dEfN34m33UJmL6hm-CnIYuDRdc6PNp4Sc5as4v26ljn5O3x4XX5lK1fVs_L-3WGwMSYcalsU0pbgkKRY21VUdbaFByF5rpGrPMaWmYAoBCNsVBKAUWtUGslUXOYk5vD3CH4ryndXm39FPq0ssqVKkEWKvXOye1BYfAxBttWQ0hPht-Ks2ofW5Viq_axJUoP1KLvXfyHSnLJAUoFfz4Bapg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885374833</pqid></control><display><type>article</type><title>Large covariance estimation using a factor model with common and group-specific factors</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Shi, Yafeng</creator><creatorcontrib>Shi, Yafeng</creatorcontrib><description>This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.3006</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>Matrices ; Optimization</subject><ispartof>Journal of forecasting, 2023-12, Vol.42 (8), p.2217-2248</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-178ed57e538c62cbe845b9a41c6919bccb2b3f0a33346dae357634b8c9987c913</cites><orcidid>0000-0001-8114-5508 ; 0000-0002-3781-7642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Yafeng</creatorcontrib><title>Large covariance estimation using a factor model with common and group-specific factors</title><title>Journal of forecasting</title><description>This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.</description><subject>Matrices</subject><subject>Optimization</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LwzAYB_AgCs4p-BECXrx0Jn3avBxl6BQGXhS9lfRpOjPWpiat4rc3YwNPz-X3vP0JueZswRnL71ofFsCYOCEzzrTOOPCPUzJjuZSZEBrOyUWMW8aYVDyfkfe1CRtL0X-b4EyPlto4us6Mzvd0iq7fUENbg6MPtPON3dEfN34m33UJmL6hm-CnIYuDRdc6PNp4Sc5as4v26ljn5O3x4XX5lK1fVs_L-3WGwMSYcalsU0pbgkKRY21VUdbaFByF5rpGrPMaWmYAoBCNsVBKAUWtUGslUXOYk5vD3CH4ryndXm39FPq0ssqVKkEWKvXOye1BYfAxBttWQ0hPht-Ks2ofW5Viq_axJUoP1KLvXfyHSnLJAUoFfz4Bapg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Shi, Yafeng</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0001-8114-5508</orcidid><orcidid>https://orcid.org/0000-0002-3781-7642</orcidid></search><sort><creationdate>20231201</creationdate><title>Large covariance estimation using a factor model with common and group-specific factors</title><author>Shi, Yafeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-178ed57e538c62cbe845b9a41c6919bccb2b3f0a33346dae357634b8c9987c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Matrices</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yafeng</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large covariance estimation using a factor model with common and group-specific factors</atitle><jtitle>Journal of forecasting</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>2217</spage><epage>2248</epage><pages>2217-2248</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>This paper proposes a new approach to estimate large covariance matrices using multilevel factor models. In order to further improve the efficiency of the principal orthogonal complement thresholding estimator (PEOT) and the proposed estimators, the generalized least squares (GLS) method is employed to refine the estimation of the factors. A novel approach to identify number of the factors is proposed for facilitating our estimation procedure. We prove the consistency of the covariance matrix estimators and the estimators for number of the factors. Our Monte Carlo simulations show that the proposed estimators have superior properties in finite samples for all different designs, and the efficiency can be improved significantly by using GLS. Finally, we apply our estimators to a dataset consisting of weekly returns of three major stock indexes constituents, and the results suggest that the proposed methods can improve the out‐of‐sample performances of portfolio optimization.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.3006</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-8114-5508</orcidid><orcidid>https://orcid.org/0000-0002-3781-7642</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2023-12, Vol.42 (8), p.2217-2248
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_2885374833
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Matrices
Optimization
title Large covariance estimation using a factor model with common and group-specific factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20covariance%20estimation%20using%20a%20factor%20model%20with%20common%20and%20group-specific%20factors&rft.jtitle=Journal%20of%20forecasting&rft.au=Shi,%20Yafeng&rft.date=2023-12-01&rft.volume=42&rft.issue=8&rft.spage=2217&rft.epage=2248&rft.pages=2217-2248&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.3006&rft_dat=%3Cproquest_cross%3E2885374833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885374833&rft_id=info:pmid/&rfr_iscdi=true