First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials
Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification metho...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2023-12, Vol.52 (12), p.7833-7841 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7841 |
---|---|
container_issue | 12 |
container_start_page | 7833 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Lin, Junxiong Li, Minglin Lv, Zhi Luo, Jing Wu, Bo Hong, Ruoyu |
description | Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb
5+
and V
5+
doped in LiNi
0.89
Co
0.055
Mn
0.055
O
2
(NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li
+
diffusion paths, V doping more efficiently reduced the diffusion barrier of Li
+
[~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li
+
. This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research. |
doi_str_mv | 10.1007/s11664-023-10707-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884941609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884941609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e51eac394fa7a89a4c6b718aa04ffb9977303b0f377a5598f4cdc3e50ff9ce73</originalsourceid><addsrcrecordid>eNp9UE1P6zAQtBBIlI8_wMkSFzj4vXWcxPERlQJPgoKgQtws11lTo5AU2znwL_jJGPokbpxmdzUzuzuEHHH4wwHk38h5XZcMCsE4SJAMtsiEV2Vum_ppm0xA1JxVhah2yV6MLwC84g2fkI8LH2Jid8H31q87jHRqOjt2Jvmhpw9pbN9pLtIKcxNGm8aA1PQtnXVoUxjsCl-9NR29C8MaQ_LZYXB0vmTfrEd2nsctnXt27-2KLjD0JrzTk_n0RnF-mrel1dAivTEJgzddPCA7LgMe_sd9sriYLaZX7Pr28t_07JrZQkJiWHE0VqjSGWkaZUpbLyVvjIHSuaVSUgoQS3BCSlNVqnGlba3ACpxTFqXYJ8cb23UY3kaMSb8MY76ti7pomlKVvAaVWcWGZcMQY0Cn18G_5gc0B_0VvN4Er3Pw-jt4DVkkNqKYyf0zhh_rX1SfR_uGvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884941609</pqid></control><display><type>article</type><title>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</title><source>SpringerNature Journals</source><creator>Lin, Junxiong ; Li, Minglin ; Lv, Zhi ; Luo, Jing ; Wu, Bo ; Hong, Ruoyu</creator><creatorcontrib>Lin, Junxiong ; Li, Minglin ; Lv, Zhi ; Luo, Jing ; Wu, Bo ; Hong, Ruoyu</creatorcontrib><description>Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb
5+
and V
5+
doped in LiNi
0.89
Co
0.055
Mn
0.055
O
2
(NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li
+
diffusion paths, V doping more efficiently reduced the diffusion barrier of Li
+
[~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li
+
. This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10707-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion barriers ; Dopants ; Doping ; Electrochemical analysis ; Electrode materials ; Electronics and Microelectronics ; Energy ; First principles ; Instrumentation ; Lithium ; Lithium-ion batteries ; Materials Science ; Mathematical analysis ; Metals ; Nickel ; Niobium ; Optical and Electronic Materials ; Original Research Article ; Oxygen ; Phase transitions ; Principles ; R&D ; Rechargeable batteries ; Research & development ; Solid State Physics ; Structural stability ; Transition metals</subject><ispartof>Journal of electronic materials, 2023-12, Vol.52 (12), p.7833-7841</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e51eac394fa7a89a4c6b718aa04ffb9977303b0f377a5598f4cdc3e50ff9ce73</cites><orcidid>0000-0002-0257-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10707-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10707-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lin, Junxiong</creatorcontrib><creatorcontrib>Li, Minglin</creatorcontrib><creatorcontrib>Lv, Zhi</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Hong, Ruoyu</creatorcontrib><title>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb
5+
and V
5+
doped in LiNi
0.89
Co
0.055
Mn
0.055
O
2
(NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li
+
diffusion paths, V doping more efficiently reduced the diffusion barrier of Li
+
[~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li
+
. This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.</description><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion barriers</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>First principles</subject><subject>Instrumentation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metals</subject><subject>Nickel</subject><subject>Niobium</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Principles</subject><subject>R&D</subject><subject>Rechargeable batteries</subject><subject>Research & development</subject><subject>Solid State Physics</subject><subject>Structural stability</subject><subject>Transition metals</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1P6zAQtBBIlI8_wMkSFzj4vXWcxPERlQJPgoKgQtws11lTo5AU2znwL_jJGPokbpxmdzUzuzuEHHH4wwHk38h5XZcMCsE4SJAMtsiEV2Vum_ppm0xA1JxVhah2yV6MLwC84g2fkI8LH2Jid8H31q87jHRqOjt2Jvmhpw9pbN9pLtIKcxNGm8aA1PQtnXVoUxjsCl-9NR29C8MaQ_LZYXB0vmTfrEd2nsctnXt27-2KLjD0JrzTk_n0RnF-mrel1dAivTEJgzddPCA7LgMe_sd9sriYLaZX7Pr28t_07JrZQkJiWHE0VqjSGWkaZUpbLyVvjIHSuaVSUgoQS3BCSlNVqnGlba3ACpxTFqXYJ8cb23UY3kaMSb8MY76ti7pomlKVvAaVWcWGZcMQY0Cn18G_5gc0B_0VvN4Er3Pw-jt4DVkkNqKYyf0zhh_rX1SfR_uGvA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lin, Junxiong</creator><creator>Li, Minglin</creator><creator>Lv, Zhi</creator><creator>Luo, Jing</creator><creator>Wu, Bo</creator><creator>Hong, Ruoyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0257-672X</orcidid></search><sort><creationdate>20231201</creationdate><title>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</title><author>Lin, Junxiong ; Li, Minglin ; Lv, Zhi ; Luo, Jing ; Wu, Bo ; Hong, Ruoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e51eac394fa7a89a4c6b718aa04ffb9977303b0f377a5598f4cdc3e50ff9ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion barriers</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>First principles</topic><topic>Instrumentation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metals</topic><topic>Nickel</topic><topic>Niobium</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Principles</topic><topic>R&D</topic><topic>Rechargeable batteries</topic><topic>Research & development</topic><topic>Solid State Physics</topic><topic>Structural stability</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Junxiong</creatorcontrib><creatorcontrib>Li, Minglin</creatorcontrib><creatorcontrib>Lv, Zhi</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Hong, Ruoyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Junxiong</au><au>Li, Minglin</au><au>Lv, Zhi</au><au>Luo, Jing</au><au>Wu, Bo</au><au>Hong, Ruoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>52</volume><issue>12</issue><spage>7833</spage><epage>7841</epage><pages>7833-7841</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb
5+
and V
5+
doped in LiNi
0.89
Co
0.055
Mn
0.055
O
2
(NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li
+
diffusion paths, V doping more efficiently reduced the diffusion barrier of Li
+
[~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li
+
. This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10707-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0257-672X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-12, Vol.52 (12), p.7833-7841 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2884941609 |
source | SpringerNature Journals |
subjects | Cathodes Characterization and Evaluation of Materials Chemistry and Materials Science Diffusion barriers Dopants Doping Electrochemical analysis Electrode materials Electronics and Microelectronics Energy First principles Instrumentation Lithium Lithium-ion batteries Materials Science Mathematical analysis Metals Nickel Niobium Optical and Electronic Materials Original Research Article Oxygen Phase transitions Principles R&D Rechargeable batteries Research & development Solid State Physics Structural stability Transition metals |
title | First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Calculation%20Study%20on%20the%20Structure%20and%20Electrochemical%20Properties%20of%20Nb-%20and%20V-Doped%20Ni-Rich%20Ternary%20(NCM911)%20Cathode%20Materials&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lin,%20Junxiong&rft.date=2023-12-01&rft.volume=52&rft.issue=12&rft.spage=7833&rft.epage=7841&rft.pages=7833-7841&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10707-0&rft_dat=%3Cproquest_cross%3E2884941609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884941609&rft_id=info:pmid/&rfr_iscdi=true |