First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials

Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023-12, Vol.52 (12), p.7833-7841
Hauptverfasser: Lin, Junxiong, Li, Minglin, Lv, Zhi, Luo, Jing, Wu, Bo, Hong, Ruoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7841
container_issue 12
container_start_page 7833
container_title Journal of electronic materials
container_volume 52
creator Lin, Junxiong
Li, Minglin
Lv, Zhi
Luo, Jing
Wu, Bo
Hong, Ruoyu
description Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb 5+ and V 5+ doped in LiNi 0.89 Co 0.055 Mn 0.055 O 2 (NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li + diffusion paths, V doping more efficiently reduced the diffusion barrier of Li + [~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li + . This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.
doi_str_mv 10.1007/s11664-023-10707-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884941609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884941609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e51eac394fa7a89a4c6b718aa04ffb9977303b0f377a5598f4cdc3e50ff9ce73</originalsourceid><addsrcrecordid>eNp9UE1P6zAQtBBIlI8_wMkSFzj4vXWcxPERlQJPgoKgQtws11lTo5AU2znwL_jJGPokbpxmdzUzuzuEHHH4wwHk38h5XZcMCsE4SJAMtsiEV2Vum_ppm0xA1JxVhah2yV6MLwC84g2fkI8LH2Jid8H31q87jHRqOjt2Jvmhpw9pbN9pLtIKcxNGm8aA1PQtnXVoUxjsCl-9NR29C8MaQ_LZYXB0vmTfrEd2nsctnXt27-2KLjD0JrzTk_n0RnF-mrel1dAivTEJgzddPCA7LgMe_sd9sriYLaZX7Pr28t_07JrZQkJiWHE0VqjSGWkaZUpbLyVvjIHSuaVSUgoQS3BCSlNVqnGlba3ACpxTFqXYJ8cb23UY3kaMSb8MY76ti7pomlKVvAaVWcWGZcMQY0Cn18G_5gc0B_0VvN4Er3Pw-jt4DVkkNqKYyf0zhh_rX1SfR_uGvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884941609</pqid></control><display><type>article</type><title>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</title><source>SpringerNature Journals</source><creator>Lin, Junxiong ; Li, Minglin ; Lv, Zhi ; Luo, Jing ; Wu, Bo ; Hong, Ruoyu</creator><creatorcontrib>Lin, Junxiong ; Li, Minglin ; Lv, Zhi ; Luo, Jing ; Wu, Bo ; Hong, Ruoyu</creatorcontrib><description>Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb 5+ and V 5+ doped in LiNi 0.89 Co 0.055 Mn 0.055 O 2 (NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li + diffusion paths, V doping more efficiently reduced the diffusion barrier of Li + [~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li + . This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10707-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion barriers ; Dopants ; Doping ; Electrochemical analysis ; Electrode materials ; Electronics and Microelectronics ; Energy ; First principles ; Instrumentation ; Lithium ; Lithium-ion batteries ; Materials Science ; Mathematical analysis ; Metals ; Nickel ; Niobium ; Optical and Electronic Materials ; Original Research Article ; Oxygen ; Phase transitions ; Principles ; R&amp;D ; Rechargeable batteries ; Research &amp; development ; Solid State Physics ; Structural stability ; Transition metals</subject><ispartof>Journal of electronic materials, 2023-12, Vol.52 (12), p.7833-7841</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e51eac394fa7a89a4c6b718aa04ffb9977303b0f377a5598f4cdc3e50ff9ce73</cites><orcidid>0000-0002-0257-672X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10707-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10707-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lin, Junxiong</creatorcontrib><creatorcontrib>Li, Minglin</creatorcontrib><creatorcontrib>Lv, Zhi</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Hong, Ruoyu</creatorcontrib><title>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb 5+ and V 5+ doped in LiNi 0.89 Co 0.055 Mn 0.055 O 2 (NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li + diffusion paths, V doping more efficiently reduced the diffusion barrier of Li + [~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li + . This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.</description><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion barriers</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>First principles</subject><subject>Instrumentation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metals</subject><subject>Nickel</subject><subject>Niobium</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Principles</subject><subject>R&amp;D</subject><subject>Rechargeable batteries</subject><subject>Research &amp; development</subject><subject>Solid State Physics</subject><subject>Structural stability</subject><subject>Transition metals</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1P6zAQtBBIlI8_wMkSFzj4vXWcxPERlQJPgoKgQtws11lTo5AU2znwL_jJGPokbpxmdzUzuzuEHHH4wwHk38h5XZcMCsE4SJAMtsiEV2Vum_ppm0xA1JxVhah2yV6MLwC84g2fkI8LH2Jid8H31q87jHRqOjt2Jvmhpw9pbN9pLtIKcxNGm8aA1PQtnXVoUxjsCl-9NR29C8MaQ_LZYXB0vmTfrEd2nsctnXt27-2KLjD0JrzTk_n0RnF-mrel1dAivTEJgzddPCA7LgMe_sd9sriYLaZX7Pr28t_07JrZQkJiWHE0VqjSGWkaZUpbLyVvjIHSuaVSUgoQS3BCSlNVqnGlba3ACpxTFqXYJ8cb23UY3kaMSb8MY76ti7pomlKVvAaVWcWGZcMQY0Cn18G_5gc0B_0VvN4Er3Pw-jt4DVkkNqKYyf0zhh_rX1SfR_uGvA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lin, Junxiong</creator><creator>Li, Minglin</creator><creator>Lv, Zhi</creator><creator>Luo, Jing</creator><creator>Wu, Bo</creator><creator>Hong, Ruoyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-0257-672X</orcidid></search><sort><creationdate>20231201</creationdate><title>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</title><author>Lin, Junxiong ; Li, Minglin ; Lv, Zhi ; Luo, Jing ; Wu, Bo ; Hong, Ruoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e51eac394fa7a89a4c6b718aa04ffb9977303b0f377a5598f4cdc3e50ff9ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion barriers</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>First principles</topic><topic>Instrumentation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metals</topic><topic>Nickel</topic><topic>Niobium</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Principles</topic><topic>R&amp;D</topic><topic>Rechargeable batteries</topic><topic>Research &amp; development</topic><topic>Solid State Physics</topic><topic>Structural stability</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Junxiong</creatorcontrib><creatorcontrib>Li, Minglin</creatorcontrib><creatorcontrib>Lv, Zhi</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Hong, Ruoyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Junxiong</au><au>Li, Minglin</au><au>Lv, Zhi</au><au>Luo, Jing</au><au>Wu, Bo</au><au>Hong, Ruoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>52</volume><issue>12</issue><spage>7833</spage><epage>7841</epage><pages>7833-7841</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb 5+ and V 5+ doped in LiNi 0.89 Co 0.055 Mn 0.055 O 2 (NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li + diffusion paths, V doping more efficiently reduced the diffusion barrier of Li + [~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li + . This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10707-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0257-672X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-12, Vol.52 (12), p.7833-7841
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2884941609
source SpringerNature Journals
subjects Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diffusion barriers
Dopants
Doping
Electrochemical analysis
Electrode materials
Electronics and Microelectronics
Energy
First principles
Instrumentation
Lithium
Lithium-ion batteries
Materials Science
Mathematical analysis
Metals
Nickel
Niobium
Optical and Electronic Materials
Original Research Article
Oxygen
Phase transitions
Principles
R&D
Rechargeable batteries
Research & development
Solid State Physics
Structural stability
Transition metals
title First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Calculation%20Study%20on%20the%20Structure%20and%20Electrochemical%20Properties%20of%20Nb-%20and%20V-Doped%20Ni-Rich%20Ternary%20(NCM911)%20Cathode%20Materials&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lin,%20Junxiong&rft.date=2023-12-01&rft.volume=52&rft.issue=12&rft.spage=7833&rft.epage=7841&rft.pages=7833-7841&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10707-0&rft_dat=%3Cproquest_cross%3E2884941609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884941609&rft_id=info:pmid/&rfr_iscdi=true