Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices

Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2023-12, Vol.52 (12), p.7962-7971
Hauptverfasser: Mazhar, Muhammad Ehsan, Tahir, Muhammad Usman, Ahmad, Javed, Ain, Qura Tul, Solre, Gideon F. B., Qadir, Kamran, Abbas, Waseem, Al-Asbahi, Bandar Ali, Asif, Sana Ullah, Malik, Sadia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7971
container_issue 12
container_start_page 7962
container_title Journal of electronic materials
container_volume 52
creator Mazhar, Muhammad Ehsan
Tahir, Muhammad Usman
Ahmad, Javed
Ain, Qura Tul
Solre, Gideon F. B.
Qadir, Kamran
Abbas, Waseem
Al-Asbahi, Bandar Ali
Asif, Sana Ullah
Malik, Sadia
description Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity ( σ ) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity ( ρ d.c ) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.
doi_str_mv 10.1007/s11664-023-10710-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884932406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884932406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-37713d40eb2e10f6b7baa8a15ebbf749d47f904ca153400b104b5e3d03ffc9353</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeAz3U3TfrvUTZ1wnSDKcheQtreakaX1qQb1E9vtIJvPl3O4Zxz4UfIJYNrBpBMHGNxLAIIecAgYRBER2TEIuFlGr8ekxHwmAVRyKNTcubcFoBFLGUj0sz70jbdO9qdquuernvjhdOfWNLV3iJVpqSPJpg1rXc2Zj3ZmCV9UqZple10UaOjytFV06HptKrp1Bd0qTqk2njRqkJ3-oB0hgddoDsnJ5WqHV783jF5ubt9ns6DxfL-YXqzCIowgS7gScJ4KQDzEBlUcZ7kSqWKRZjnVSKyUiRVBqLwDhcAOQORR8hL4FVVZDziY3I17La2-dij6-S22VvjX8owTUXGQwGxT4VDqrCNcxYr2Vq9U7aXDOQ3WDmAlR6s_AErv6f5UHI-bN7Q_k3_0_oCudZ8AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884932406</pqid></control><display><type>article</type><title>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mazhar, Muhammad Ehsan ; Tahir, Muhammad Usman ; Ahmad, Javed ; Ain, Qura Tul ; Solre, Gideon F. B. ; Qadir, Kamran ; Abbas, Waseem ; Al-Asbahi, Bandar Ali ; Asif, Sana Ullah ; Malik, Sadia</creator><creatorcontrib>Mazhar, Muhammad Ehsan ; Tahir, Muhammad Usman ; Ahmad, Javed ; Ain, Qura Tul ; Solre, Gideon F. B. ; Qadir, Kamran ; Abbas, Waseem ; Al-Asbahi, Bandar Ali ; Asif, Sana Ullah ; Malik, Sadia</creatorcontrib><description>Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity ( σ ) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity ( ρ d.c ) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10710-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Crystal structure ; Dielectric properties ; Electrical measurement ; Electronics and Microelectronics ; Energy storage ; Instrumentation ; Materials Science ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Optical and Electronic Materials ; Original Research Article ; Physics ; Scanning electron microscopy ; Solid State Physics ; Temperature ; Zinc oxide ; Zinc sulfide</subject><ispartof>Journal of electronic materials, 2023-12, Vol.52 (12), p.7962-7971</ispartof><rights>The Minerals, Metals &amp; Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-37713d40eb2e10f6b7baa8a15ebbf749d47f904ca153400b104b5e3d03ffc9353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10710-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10710-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mazhar, Muhammad Ehsan</creatorcontrib><creatorcontrib>Tahir, Muhammad Usman</creatorcontrib><creatorcontrib>Ahmad, Javed</creatorcontrib><creatorcontrib>Ain, Qura Tul</creatorcontrib><creatorcontrib>Solre, Gideon F. B.</creatorcontrib><creatorcontrib>Qadir, Kamran</creatorcontrib><creatorcontrib>Abbas, Waseem</creatorcontrib><creatorcontrib>Al-Asbahi, Bandar Ali</creatorcontrib><creatorcontrib>Asif, Sana Ullah</creatorcontrib><creatorcontrib>Malik, Sadia</creatorcontrib><title>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity ( σ ) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity ( ρ d.c ) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Dielectric properties</subject><subject>Electrical measurement</subject><subject>Electronics and Microelectronics</subject><subject>Energy storage</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Temperature</subject><subject>Zinc oxide</subject><subject>Zinc sulfide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF9LwzAUxYMoOKdfwKeAz3U3TfrvUTZ1wnSDKcheQtreakaX1qQb1E9vtIJvPl3O4Zxz4UfIJYNrBpBMHGNxLAIIecAgYRBER2TEIuFlGr8ekxHwmAVRyKNTcubcFoBFLGUj0sz70jbdO9qdquuernvjhdOfWNLV3iJVpqSPJpg1rXc2Zj3ZmCV9UqZple10UaOjytFV06HptKrp1Bd0qTqk2njRqkJ3-oB0hgddoDsnJ5WqHV783jF5ubt9ns6DxfL-YXqzCIowgS7gScJ4KQDzEBlUcZ7kSqWKRZjnVSKyUiRVBqLwDhcAOQORR8hL4FVVZDziY3I17La2-dij6-S22VvjX8owTUXGQwGxT4VDqrCNcxYr2Vq9U7aXDOQ3WDmAlR6s_AErv6f5UHI-bN7Q_k3_0_oCudZ8AA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mazhar, Muhammad Ehsan</creator><creator>Tahir, Muhammad Usman</creator><creator>Ahmad, Javed</creator><creator>Ain, Qura Tul</creator><creator>Solre, Gideon F. B.</creator><creator>Qadir, Kamran</creator><creator>Abbas, Waseem</creator><creator>Al-Asbahi, Bandar Ali</creator><creator>Asif, Sana Ullah</creator><creator>Malik, Sadia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20231201</creationdate><title>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</title><author>Mazhar, Muhammad Ehsan ; Tahir, Muhammad Usman ; Ahmad, Javed ; Ain, Qura Tul ; Solre, Gideon F. B. ; Qadir, Kamran ; Abbas, Waseem ; Al-Asbahi, Bandar Ali ; Asif, Sana Ullah ; Malik, Sadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-37713d40eb2e10f6b7baa8a15ebbf749d47f904ca153400b104b5e3d03ffc9353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Dielectric properties</topic><topic>Electrical measurement</topic><topic>Electronics and Microelectronics</topic><topic>Energy storage</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Temperature</topic><topic>Zinc oxide</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazhar, Muhammad Ehsan</creatorcontrib><creatorcontrib>Tahir, Muhammad Usman</creatorcontrib><creatorcontrib>Ahmad, Javed</creatorcontrib><creatorcontrib>Ain, Qura Tul</creatorcontrib><creatorcontrib>Solre, Gideon F. B.</creatorcontrib><creatorcontrib>Qadir, Kamran</creatorcontrib><creatorcontrib>Abbas, Waseem</creatorcontrib><creatorcontrib>Al-Asbahi, Bandar Ali</creatorcontrib><creatorcontrib>Asif, Sana Ullah</creatorcontrib><creatorcontrib>Malik, Sadia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazhar, Muhammad Ehsan</au><au>Tahir, Muhammad Usman</au><au>Ahmad, Javed</au><au>Ain, Qura Tul</au><au>Solre, Gideon F. B.</au><au>Qadir, Kamran</au><au>Abbas, Waseem</au><au>Al-Asbahi, Bandar Ali</au><au>Asif, Sana Ullah</au><au>Malik, Sadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>52</volume><issue>12</issue><spage>7962</spage><epage>7971</epage><pages>7962-7971</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity ( σ ) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity ( ρ d.c ) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10710-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2023-12, Vol.52 (12), p.7962-7971
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2884932406
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Crystal structure
Dielectric properties
Electrical measurement
Electronics and Microelectronics
Energy storage
Instrumentation
Materials Science
Morphology
Nanocomposites
Nanomaterials
Nanoparticles
Optical and Electronic Materials
Original Research Article
Physics
Scanning electron microscopy
Solid State Physics
Temperature
Zinc oxide
Zinc sulfide
title Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermally%20Synthesized%20Pure%20and%20Mn-Doped%20ZnS/ZnO%20Nanoparticles%20as%20Potential%20Candidate%20in%20Capacitive%20Devices&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mazhar,%20Muhammad%20Ehsan&rft.date=2023-12-01&rft.volume=52&rft.issue=12&rft.spage=7962&rft.epage=7971&rft.pages=7962-7971&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10710-5&rft_dat=%3Cproquest_cross%3E2884932406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884932406&rft_id=info:pmid/&rfr_iscdi=true