Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices
Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were c...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2023-12, Vol.52 (12), p.7962-7971 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7971 |
---|---|
container_issue | 12 |
container_start_page | 7962 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Mazhar, Muhammad Ehsan Tahir, Muhammad Usman Ahmad, Javed Ain, Qura Tul Solre, Gideon F. B. Qadir, Kamran Abbas, Waseem Al-Asbahi, Bandar Ali Asif, Sana Ullah Malik, Sadia |
description | Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity (
σ
) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity (
ρ
d.c
) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices. |
doi_str_mv | 10.1007/s11664-023-10710-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884932406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884932406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-37713d40eb2e10f6b7baa8a15ebbf749d47f904ca153400b104b5e3d03ffc9353</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeAz3U3TfrvUTZ1wnSDKcheQtreakaX1qQb1E9vtIJvPl3O4Zxz4UfIJYNrBpBMHGNxLAIIecAgYRBER2TEIuFlGr8ekxHwmAVRyKNTcubcFoBFLGUj0sz70jbdO9qdquuernvjhdOfWNLV3iJVpqSPJpg1rXc2Zj3ZmCV9UqZple10UaOjytFV06HptKrp1Bd0qTqk2njRqkJ3-oB0hgddoDsnJ5WqHV783jF5ubt9ns6DxfL-YXqzCIowgS7gScJ4KQDzEBlUcZ7kSqWKRZjnVSKyUiRVBqLwDhcAOQORR8hL4FVVZDziY3I17La2-dij6-S22VvjX8owTUXGQwGxT4VDqrCNcxYr2Vq9U7aXDOQ3WDmAlR6s_AErv6f5UHI-bN7Q_k3_0_oCudZ8AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884932406</pqid></control><display><type>article</type><title>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mazhar, Muhammad Ehsan ; Tahir, Muhammad Usman ; Ahmad, Javed ; Ain, Qura Tul ; Solre, Gideon F. B. ; Qadir, Kamran ; Abbas, Waseem ; Al-Asbahi, Bandar Ali ; Asif, Sana Ullah ; Malik, Sadia</creator><creatorcontrib>Mazhar, Muhammad Ehsan ; Tahir, Muhammad Usman ; Ahmad, Javed ; Ain, Qura Tul ; Solre, Gideon F. B. ; Qadir, Kamran ; Abbas, Waseem ; Al-Asbahi, Bandar Ali ; Asif, Sana Ullah ; Malik, Sadia</creatorcontrib><description>Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity (
σ
) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity (
ρ
d.c
) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10710-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Crystal structure ; Dielectric properties ; Electrical measurement ; Electronics and Microelectronics ; Energy storage ; Instrumentation ; Materials Science ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Optical and Electronic Materials ; Original Research Article ; Physics ; Scanning electron microscopy ; Solid State Physics ; Temperature ; Zinc oxide ; Zinc sulfide</subject><ispartof>Journal of electronic materials, 2023-12, Vol.52 (12), p.7962-7971</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-37713d40eb2e10f6b7baa8a15ebbf749d47f904ca153400b104b5e3d03ffc9353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10710-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10710-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mazhar, Muhammad Ehsan</creatorcontrib><creatorcontrib>Tahir, Muhammad Usman</creatorcontrib><creatorcontrib>Ahmad, Javed</creatorcontrib><creatorcontrib>Ain, Qura Tul</creatorcontrib><creatorcontrib>Solre, Gideon F. B.</creatorcontrib><creatorcontrib>Qadir, Kamran</creatorcontrib><creatorcontrib>Abbas, Waseem</creatorcontrib><creatorcontrib>Al-Asbahi, Bandar Ali</creatorcontrib><creatorcontrib>Asif, Sana Ullah</creatorcontrib><creatorcontrib>Malik, Sadia</creatorcontrib><title>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity (
σ
) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity (
ρ
d.c
) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Dielectric properties</subject><subject>Electrical measurement</subject><subject>Electronics and Microelectronics</subject><subject>Energy storage</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Temperature</subject><subject>Zinc oxide</subject><subject>Zinc sulfide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF9LwzAUxYMoOKdfwKeAz3U3TfrvUTZ1wnSDKcheQtreakaX1qQb1E9vtIJvPl3O4Zxz4UfIJYNrBpBMHGNxLAIIecAgYRBER2TEIuFlGr8ekxHwmAVRyKNTcubcFoBFLGUj0sz70jbdO9qdquuernvjhdOfWNLV3iJVpqSPJpg1rXc2Zj3ZmCV9UqZple10UaOjytFV06HptKrp1Bd0qTqk2njRqkJ3-oB0hgddoDsnJ5WqHV783jF5ubt9ns6DxfL-YXqzCIowgS7gScJ4KQDzEBlUcZ7kSqWKRZjnVSKyUiRVBqLwDhcAOQORR8hL4FVVZDziY3I17La2-dij6-S22VvjX8owTUXGQwGxT4VDqrCNcxYr2Vq9U7aXDOQ3WDmAlR6s_AErv6f5UHI-bN7Q_k3_0_oCudZ8AA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mazhar, Muhammad Ehsan</creator><creator>Tahir, Muhammad Usman</creator><creator>Ahmad, Javed</creator><creator>Ain, Qura Tul</creator><creator>Solre, Gideon F. B.</creator><creator>Qadir, Kamran</creator><creator>Abbas, Waseem</creator><creator>Al-Asbahi, Bandar Ali</creator><creator>Asif, Sana Ullah</creator><creator>Malik, Sadia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20231201</creationdate><title>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</title><author>Mazhar, Muhammad Ehsan ; Tahir, Muhammad Usman ; Ahmad, Javed ; Ain, Qura Tul ; Solre, Gideon F. B. ; Qadir, Kamran ; Abbas, Waseem ; Al-Asbahi, Bandar Ali ; Asif, Sana Ullah ; Malik, Sadia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-37713d40eb2e10f6b7baa8a15ebbf749d47f904ca153400b104b5e3d03ffc9353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Dielectric properties</topic><topic>Electrical measurement</topic><topic>Electronics and Microelectronics</topic><topic>Energy storage</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Temperature</topic><topic>Zinc oxide</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazhar, Muhammad Ehsan</creatorcontrib><creatorcontrib>Tahir, Muhammad Usman</creatorcontrib><creatorcontrib>Ahmad, Javed</creatorcontrib><creatorcontrib>Ain, Qura Tul</creatorcontrib><creatorcontrib>Solre, Gideon F. B.</creatorcontrib><creatorcontrib>Qadir, Kamran</creatorcontrib><creatorcontrib>Abbas, Waseem</creatorcontrib><creatorcontrib>Al-Asbahi, Bandar Ali</creatorcontrib><creatorcontrib>Asif, Sana Ullah</creatorcontrib><creatorcontrib>Malik, Sadia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazhar, Muhammad Ehsan</au><au>Tahir, Muhammad Usman</au><au>Ahmad, Javed</au><au>Ain, Qura Tul</au><au>Solre, Gideon F. B.</au><au>Qadir, Kamran</au><au>Abbas, Waseem</au><au>Al-Asbahi, Bandar Ali</au><au>Asif, Sana Ullah</au><au>Malik, Sadia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>52</volume><issue>12</issue><spage>7962</spage><epage>7971</epage><pages>7962-7971</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Remarkable efforts have been dedicated to developing energy storage devices with hybrid design and nano-scale approaches. This study used a hydrothermal technique to synthesize pure and Mn-doped ZnS/ZnO hybrid nanocomposites. The chemical composition and crystallinity of ZnS/ZnO nanoparticles were confirmed by XRD analysis. The morphology of the nanocomposites was studied by scanning electron microscopy, which demonstrated their oval-shaped formation. Moreover, the variation of DC conductivity (
σ
) was observed to be directly proportional to the temperature. Electrical measurements demonstrated that the electrical resistivity (
ρ
d.c
) increased with doping at the same applied voltage. Therefore, the synthesized materials have a significant dielectric performance that may direct their application in energy storage devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10710-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-12, Vol.52 (12), p.7962-7971 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2884932406 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Crystal structure Dielectric properties Electrical measurement Electronics and Microelectronics Energy storage Instrumentation Materials Science Morphology Nanocomposites Nanomaterials Nanoparticles Optical and Electronic Materials Original Research Article Physics Scanning electron microscopy Solid State Physics Temperature Zinc oxide Zinc sulfide |
title | Hydrothermally Synthesized Pure and Mn-Doped ZnS/ZnO Nanoparticles as Potential Candidate in Capacitive Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermally%20Synthesized%20Pure%20and%20Mn-Doped%20ZnS/ZnO%20Nanoparticles%20as%20Potential%20Candidate%20in%20Capacitive%20Devices&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mazhar,%20Muhammad%20Ehsan&rft.date=2023-12-01&rft.volume=52&rft.issue=12&rft.spage=7962&rft.epage=7971&rft.pages=7962-7971&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10710-5&rft_dat=%3Cproquest_cross%3E2884932406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884932406&rft_id=info:pmid/&rfr_iscdi=true |