Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles

Edge intelligence (EI) migrates data and artificial intelligence (AI) to the "edge" of a network, enhancing the high-bandwidth and low-latency of wireless data transmission with the multiplier effect of 5G and AI, greatly improving the edges' processing speed. Through integrating EI a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-11, Vol.24 (11), p.1-12
Hauptverfasser: Chen, Chen, Wang, Chenyu, Liu, Bin, He, Ci, Cong, Li, Wan, Shaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 11
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Chen, Chen
Wang, Chenyu
Liu, Bin
He, Ci
Cong, Li
Wan, Shaohua
description Edge intelligence (EI) migrates data and artificial intelligence (AI) to the "edge" of a network, enhancing the high-bandwidth and low-latency of wireless data transmission with the multiplier effect of 5G and AI, greatly improving the edges' processing speed. Through integrating EI and computer vision technology, video surveillance systems in ITS can improve the processing capability of traffic information, which improves traffic efficiency and ensures traffic safety. Accordingly, first, we propose an edge intelligence-based improved-YOLOv4 vehicle detection algorithm, introducing an efficient channel attention (ECA) mechanism and a high-resolution network (HRNet) to enhance vehicle detection ability. Second, an edge intelligence-based improved DeepLabv3+ image segmentation algorithm is proposed, replacing the original backbone network with MobileNetv2 and using the softpool method, thus reducing the network size while improving the segmentation accuracy. Experimental results show that our proposed model has a higher average precision (AP) and can improve vehicle detection accuracy from 82.03% to 86.22%. The mean intersection over union (mIOU) of the image segmentation model improves from 73.32% to 75.63%.
doi_str_mv 10.1109/TITS.2022.3232153
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2884899204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10007064</ieee_id><sourcerecordid>2884899204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-6afef5868c8917bee7ef4849cd04b84a10a12fcf8ca2dbeb9f4699ae7cba421c3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcPIHhR8LozSdM2uRxz08LAi02vhJCmJ7OjbWaSIr69rZvg1Tn8_N858CF0S_CMECwetsV2M6OY0llCE0rS5AxNSJryGGOSnY87ZbHAKb5EV97vh5SlhEzQ-7LaQVR0AZqm3kGnIVq2B_sFDqroDT5q3UD0CAF0qG0Xqa6KilYNyAZ2LXRB_cbGumjeB9vZ1vb-j_PX6MKoxsPNaU7R62q5XTzH65enYjFfx5oKFuJMGTApz7jmguQlQA6GcSZ0hVnJmSJYEWq04VrRqoRSGJYJoSDXpWKU6GSK7o93D85-9uCD3NvedcNLSTlnXAiK2dAix5Z21nsHRh5c3Sr3LQmWo0Q5SpSjRHmSODB3R6YGgH99jHOcseQHR5Rvbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884899204</pqid></control><display><type>article</type><title>Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Chen ; Wang, Chenyu ; Liu, Bin ; He, Ci ; Cong, Li ; Wan, Shaohua</creator><creatorcontrib>Chen, Chen ; Wang, Chenyu ; Liu, Bin ; He, Ci ; Cong, Li ; Wan, Shaohua</creatorcontrib><description>Edge intelligence (EI) migrates data and artificial intelligence (AI) to the "edge" of a network, enhancing the high-bandwidth and low-latency of wireless data transmission with the multiplier effect of 5G and AI, greatly improving the edges' processing speed. Through integrating EI and computer vision technology, video surveillance systems in ITS can improve the processing capability of traffic information, which improves traffic efficiency and ensures traffic safety. Accordingly, first, we propose an edge intelligence-based improved-YOLOv4 vehicle detection algorithm, introducing an efficient channel attention (ECA) mechanism and a high-resolution network (HRNet) to enhance vehicle detection ability. Second, an edge intelligence-based improved DeepLabv3+ image segmentation algorithm is proposed, replacing the original backbone network with MobileNetv2 and using the softpool method, thus reducing the network size while improving the segmentation accuracy. Experimental results show that our proposed model has a higher average precision (AP) and can improve vehicle detection accuracy from 82.03% to 86.22%. The mean intersection over union (mIOU) of the image segmentation model improves from 73.32% to 75.63%.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3232153</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; attention mechanism ; Computer networks ; Computer vision ; Convolution ; Data transmission ; edge intelligence ; Image edge detection ; Image enhancement ; Image segmentation ; Network latency ; Object detection ; power constraint network ; Real-time systems ; Surveillance systems ; Task analysis ; Traffic information ; Vehicle detection</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-11, Vol.24 (11), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-6afef5868c8917bee7ef4849cd04b84a10a12fcf8ca2dbeb9f4699ae7cba421c3</citedby><cites>FETCH-LOGICAL-c294t-6afef5868c8917bee7ef4849cd04b84a10a12fcf8ca2dbeb9f4699ae7cba421c3</cites><orcidid>0000-0002-4971-5029 ; 0000-0001-7013-9081 ; 0000-0002-2877-1291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10007064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10007064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>He, Ci</creatorcontrib><creatorcontrib>Cong, Li</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><title>Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Edge intelligence (EI) migrates data and artificial intelligence (AI) to the "edge" of a network, enhancing the high-bandwidth and low-latency of wireless data transmission with the multiplier effect of 5G and AI, greatly improving the edges' processing speed. Through integrating EI and computer vision technology, video surveillance systems in ITS can improve the processing capability of traffic information, which improves traffic efficiency and ensures traffic safety. Accordingly, first, we propose an edge intelligence-based improved-YOLOv4 vehicle detection algorithm, introducing an efficient channel attention (ECA) mechanism and a high-resolution network (HRNet) to enhance vehicle detection ability. Second, an edge intelligence-based improved DeepLabv3+ image segmentation algorithm is proposed, replacing the original backbone network with MobileNetv2 and using the softpool method, thus reducing the network size while improving the segmentation accuracy. Experimental results show that our proposed model has a higher average precision (AP) and can improve vehicle detection accuracy from 82.03% to 86.22%. The mean intersection over union (mIOU) of the image segmentation model improves from 73.32% to 75.63%.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>attention mechanism</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Data transmission</subject><subject>edge intelligence</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Network latency</subject><subject>Object detection</subject><subject>power constraint network</subject><subject>Real-time systems</subject><subject>Surveillance systems</subject><subject>Task analysis</subject><subject>Traffic information</subject><subject>Vehicle detection</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOKcPIHhR8LozSdM2uRxz08LAi02vhJCmJ7OjbWaSIr69rZvg1Tn8_N858CF0S_CMECwetsV2M6OY0llCE0rS5AxNSJryGGOSnY87ZbHAKb5EV97vh5SlhEzQ-7LaQVR0AZqm3kGnIVq2B_sFDqroDT5q3UD0CAF0qG0Xqa6KilYNyAZ2LXRB_cbGumjeB9vZ1vb-j_PX6MKoxsPNaU7R62q5XTzH65enYjFfx5oKFuJMGTApz7jmguQlQA6GcSZ0hVnJmSJYEWq04VrRqoRSGJYJoSDXpWKU6GSK7o93D85-9uCD3NvedcNLSTlnXAiK2dAix5Z21nsHRh5c3Sr3LQmWo0Q5SpSjRHmSODB3R6YGgH99jHOcseQHR5Rvbw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Chen, Chen</creator><creator>Wang, Chenyu</creator><creator>Liu, Bin</creator><creator>He, Ci</creator><creator>Cong, Li</creator><creator>Wan, Shaohua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4971-5029</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid><orcidid>https://orcid.org/0000-0002-2877-1291</orcidid></search><sort><creationdate>20231101</creationdate><title>Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles</title><author>Chen, Chen ; Wang, Chenyu ; Liu, Bin ; He, Ci ; Cong, Li ; Wan, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-6afef5868c8917bee7ef4849cd04b84a10a12fcf8ca2dbeb9f4699ae7cba421c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>attention mechanism</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Data transmission</topic><topic>edge intelligence</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Network latency</topic><topic>Object detection</topic><topic>power constraint network</topic><topic>Real-time systems</topic><topic>Surveillance systems</topic><topic>Task analysis</topic><topic>Traffic information</topic><topic>Vehicle detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>He, Ci</creatorcontrib><creatorcontrib>Cong, Li</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Chen</au><au>Wang, Chenyu</au><au>Liu, Bin</au><au>He, Ci</au><au>Cong, Li</au><au>Wan, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>24</volume><issue>11</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Edge intelligence (EI) migrates data and artificial intelligence (AI) to the "edge" of a network, enhancing the high-bandwidth and low-latency of wireless data transmission with the multiplier effect of 5G and AI, greatly improving the edges' processing speed. Through integrating EI and computer vision technology, video surveillance systems in ITS can improve the processing capability of traffic information, which improves traffic efficiency and ensures traffic safety. Accordingly, first, we propose an edge intelligence-based improved-YOLOv4 vehicle detection algorithm, introducing an efficient channel attention (ECA) mechanism and a high-resolution network (HRNet) to enhance vehicle detection ability. Second, an edge intelligence-based improved DeepLabv3+ image segmentation algorithm is proposed, replacing the original backbone network with MobileNetv2 and using the softpool method, thus reducing the network size while improving the segmentation accuracy. Experimental results show that our proposed model has a higher average precision (AP) and can improve vehicle detection accuracy from 82.03% to 86.22%. The mean intersection over union (mIOU) of the image segmentation model improves from 73.32% to 75.63%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3232153</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4971-5029</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid><orcidid>https://orcid.org/0000-0002-2877-1291</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-11, Vol.24 (11), p.1-12
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2884899204
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial intelligence
attention mechanism
Computer networks
Computer vision
Convolution
Data transmission
edge intelligence
Image edge detection
Image enhancement
Image segmentation
Network latency
Object detection
power constraint network
Real-time systems
Surveillance systems
Task analysis
Traffic information
Vehicle detection
title Edge Intelligence Empowered Vehicle Detection and Image Segmentation for Autonomous Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Intelligence%20Empowered%20Vehicle%20Detection%20and%20Image%20Segmentation%20for%20Autonomous%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Chen&rft.date=2023-11-01&rft.volume=24&rft.issue=11&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3232153&rft_dat=%3Cproquest_RIE%3E2884899204%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884899204&rft_id=info:pmid/&rft_ieee_id=10007064&rfr_iscdi=true