Antiferromagnetic Films and Their Applications

Spintronic devices are expected to replace the recent nanoelectronic memories and sensors due to their efficiency in energy consumption and functionality with scalability. To date, spintronic devices, namely magnetoresistive junctions, employ ferromagnetic materials by storing information bits as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.117443-117459
Hauptverfasser: Hirohata, Atsufumi, Lloyd, David C., Kubota, Takahide, Seki, Takeshi, Takanashi, Koki, Sukegawa, Hiroaki, Wen, Zhenchao, Mitani, Seiji, Koizumi, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spintronic devices are expected to replace the recent nanoelectronic memories and sensors due to their efficiency in energy consumption and functionality with scalability. To date, spintronic devices, namely magnetoresistive junctions, employ ferromagnetic materials by storing information bits as their magnetization directions. However, in order to achieve further miniaturization with maintaining and/or improving their efficiency and functionality, new materials development is required: 1) increase in spin polarization of a ferromagnet or 2) replacement of a ferromagnet by an antiferromagnet. Antiferromagnetic materials have been used to induce an exchange bias to the neighboring ferromagnet but they have recently been found to demonstrate a 100% spin-polarized electrical current, up to THz oscillation and topological effects. In this review, the recent development of three types of antiferromagnets is summarized with offering their future perspectives towards device applications.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3326448