Live Traffic Video Multicasting Services in UAV-Assisted Intelligent Transport Systems: A Multiactor Attention Critic Approach
Live traffic video is vitally important for vehicles in future intelligent transport systems (ITSs). Due to the limitation of onboard sensors, vehicles may not be able to obtain a full view of the traffic situations which endangers safety for autonomous driving vehicles. In this article, we propose...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2023-11, Vol.10 (22), p.19740-19752 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19752 |
---|---|
container_issue | 22 |
container_start_page | 19740 |
container_title | IEEE internet of things journal |
container_volume | 10 |
creator | Fu, Fang Xue, Bin Cai, Lin Yang, Laurence T. Zhang, Zhicai Luo, Jia Wang, Chenmeng |
description | Live traffic video is vitally important for vehicles in future intelligent transport systems (ITSs). Due to the limitation of onboard sensors, vehicles may not be able to obtain a full view of the traffic situations which endangers safety for autonomous driving vehicles. In this article, we propose a traffic video multicasting scheme by using video splitting and group splitting techniques for unmanned aerial vehicles (UAVs)-assisted ITS, in which UAVs are considered as the eyes in the sky to capture real-time traffic videos. We aim to maximize the long-term video quality received by vehicles by jointly optimizing vehicle grouping and spectrum allocation. Considering the interactions among UAVs, the above optimization problem is formulated as a multiagent coordination problem in the form of a Markov game (MG). The MG is subsequently solved by leveraging a state-of-the-art multiagent deep reinforcement learning (MADRL) algorithm, namely, multiactor attention critic (MAAC), in which an attention mechanism is utilized to pay attention to other agents to make the learning process more effective and scalable. Extensive simulation results show that the MAAC-based algorithm has better performance in terms of video quality and spectrum efficiency compared with the baseline methods. |
doi_str_mv | 10.1109/JIOT.2023.3282936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884893440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884893440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-c10c444e7d03039e4144f71296bf7b713553f0cdc7dbe2c646c0c8b02d2816e63</originalsourceid><addsrcrecordid>eNpNkLtqwzAUhkVpoSHNA3QTdHaqWyS7mwm9uKRkyGUVtiylCo7sSkogS5-9NsnQ6fxw_gt8ADxiNMUYZc-fxXI9JYjQKSUpySi_ASNCiUgY5-T2n74HkxD2CKE-NsMZH4HfhT1puPalMVbBra11C7-OTbSqDNG6HVxpf7JKB2gd3OTbJA_BhqhrWLiom8butItD3oWu9RGuzv3zEF5gfqkpVWw9zGPsbbZ1cO5t3w3zrvNtqb4fwJ0pm6An1zsGm7fX9fwjWSzfi3m-SBQRNCYKI8UY06JGFNFMM8yYEZhkvDKiEpjOZtQgVStRV5oozrhCKq0QqUmKueZ0DJ4uvf3sz1GHKPft0bt-UpI0ZWlGGUO9C19cyrcheG1k5-2h9GeJkRxIy4G0HEjLK2n6B9IkcdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893440</pqid></control><display><type>article</type><title>Live Traffic Video Multicasting Services in UAV-Assisted Intelligent Transport Systems: A Multiactor Attention Critic Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Fang ; Xue, Bin ; Cai, Lin ; Yang, Laurence T. ; Zhang, Zhicai ; Luo, Jia ; Wang, Chenmeng</creator><creatorcontrib>Fu, Fang ; Xue, Bin ; Cai, Lin ; Yang, Laurence T. ; Zhang, Zhicai ; Luo, Jia ; Wang, Chenmeng</creatorcontrib><description>Live traffic video is vitally important for vehicles in future intelligent transport systems (ITSs). Due to the limitation of onboard sensors, vehicles may not be able to obtain a full view of the traffic situations which endangers safety for autonomous driving vehicles. In this article, we propose a traffic video multicasting scheme by using video splitting and group splitting techniques for unmanned aerial vehicles (UAVs)-assisted ITS, in which UAVs are considered as the eyes in the sky to capture real-time traffic videos. We aim to maximize the long-term video quality received by vehicles by jointly optimizing vehicle grouping and spectrum allocation. Considering the interactions among UAVs, the above optimization problem is formulated as a multiagent coordination problem in the form of a Markov game (MG). The MG is subsequently solved by leveraging a state-of-the-art multiagent deep reinforcement learning (MADRL) algorithm, namely, multiactor attention critic (MAAC), in which an attention mechanism is utilized to pay attention to other agents to make the learning process more effective and scalable. Extensive simulation results show that the MAAC-based algorithm has better performance in terms of video quality and spectrum efficiency compared with the baseline methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3282936</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Deep learning ; Intelligent transportation systems ; Machine learning ; Multiagent systems ; Multicasting ; Optimization ; Spectrum allocation ; Splitting ; Unmanned aerial vehicles</subject><ispartof>IEEE internet of things journal, 2023-11, Vol.10 (22), p.19740-19752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-c10c444e7d03039e4144f71296bf7b713553f0cdc7dbe2c646c0c8b02d2816e63</citedby><cites>FETCH-LOGICAL-c273t-c10c444e7d03039e4144f71296bf7b713553f0cdc7dbe2c646c0c8b02d2816e63</cites><orcidid>0000-0002-1093-4865 ; 0000-0002-0724-437X ; 0000-0001-9894-7195 ; 0000-0002-7860-0554 ; 0000-0002-7986-4244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Fu, Fang</creatorcontrib><creatorcontrib>Xue, Bin</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Zhang, Zhicai</creatorcontrib><creatorcontrib>Luo, Jia</creatorcontrib><creatorcontrib>Wang, Chenmeng</creatorcontrib><title>Live Traffic Video Multicasting Services in UAV-Assisted Intelligent Transport Systems: A Multiactor Attention Critic Approach</title><title>IEEE internet of things journal</title><description>Live traffic video is vitally important for vehicles in future intelligent transport systems (ITSs). Due to the limitation of onboard sensors, vehicles may not be able to obtain a full view of the traffic situations which endangers safety for autonomous driving vehicles. In this article, we propose a traffic video multicasting scheme by using video splitting and group splitting techniques for unmanned aerial vehicles (UAVs)-assisted ITS, in which UAVs are considered as the eyes in the sky to capture real-time traffic videos. We aim to maximize the long-term video quality received by vehicles by jointly optimizing vehicle grouping and spectrum allocation. Considering the interactions among UAVs, the above optimization problem is formulated as a multiagent coordination problem in the form of a Markov game (MG). The MG is subsequently solved by leveraging a state-of-the-art multiagent deep reinforcement learning (MADRL) algorithm, namely, multiactor attention critic (MAAC), in which an attention mechanism is utilized to pay attention to other agents to make the learning process more effective and scalable. Extensive simulation results show that the MAAC-based algorithm has better performance in terms of video quality and spectrum efficiency compared with the baseline methods.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>Multiagent systems</subject><subject>Multicasting</subject><subject>Optimization</subject><subject>Spectrum allocation</subject><subject>Splitting</subject><subject>Unmanned aerial vehicles</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLtqwzAUhkVpoSHNA3QTdHaqWyS7mwm9uKRkyGUVtiylCo7sSkogS5-9NsnQ6fxw_gt8ADxiNMUYZc-fxXI9JYjQKSUpySi_ASNCiUgY5-T2n74HkxD2CKE-NsMZH4HfhT1puPalMVbBra11C7-OTbSqDNG6HVxpf7JKB2gd3OTbJA_BhqhrWLiom8butItD3oWu9RGuzv3zEF5gfqkpVWw9zGPsbbZ1cO5t3w3zrvNtqb4fwJ0pm6An1zsGm7fX9fwjWSzfi3m-SBQRNCYKI8UY06JGFNFMM8yYEZhkvDKiEpjOZtQgVStRV5oozrhCKq0QqUmKueZ0DJ4uvf3sz1GHKPft0bt-UpI0ZWlGGUO9C19cyrcheG1k5-2h9GeJkRxIy4G0HEjLK2n6B9IkcdM</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Fu, Fang</creator><creator>Xue, Bin</creator><creator>Cai, Lin</creator><creator>Yang, Laurence T.</creator><creator>Zhang, Zhicai</creator><creator>Luo, Jia</creator><creator>Wang, Chenmeng</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1093-4865</orcidid><orcidid>https://orcid.org/0000-0002-0724-437X</orcidid><orcidid>https://orcid.org/0000-0001-9894-7195</orcidid><orcidid>https://orcid.org/0000-0002-7860-0554</orcidid><orcidid>https://orcid.org/0000-0002-7986-4244</orcidid></search><sort><creationdate>20231115</creationdate><title>Live Traffic Video Multicasting Services in UAV-Assisted Intelligent Transport Systems: A Multiactor Attention Critic Approach</title><author>Fu, Fang ; Xue, Bin ; Cai, Lin ; Yang, Laurence T. ; Zhang, Zhicai ; Luo, Jia ; Wang, Chenmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-c10c444e7d03039e4144f71296bf7b713553f0cdc7dbe2c646c0c8b02d2816e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>Multiagent systems</topic><topic>Multicasting</topic><topic>Optimization</topic><topic>Spectrum allocation</topic><topic>Splitting</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Fang</creatorcontrib><creatorcontrib>Xue, Bin</creatorcontrib><creatorcontrib>Cai, Lin</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Zhang, Zhicai</creatorcontrib><creatorcontrib>Luo, Jia</creatorcontrib><creatorcontrib>Wang, Chenmeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Fang</au><au>Xue, Bin</au><au>Cai, Lin</au><au>Yang, Laurence T.</au><au>Zhang, Zhicai</au><au>Luo, Jia</au><au>Wang, Chenmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live Traffic Video Multicasting Services in UAV-Assisted Intelligent Transport Systems: A Multiactor Attention Critic Approach</atitle><jtitle>IEEE internet of things journal</jtitle><date>2023-11-15</date><risdate>2023</risdate><volume>10</volume><issue>22</issue><spage>19740</spage><epage>19752</epage><pages>19740-19752</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><abstract>Live traffic video is vitally important for vehicles in future intelligent transport systems (ITSs). Due to the limitation of onboard sensors, vehicles may not be able to obtain a full view of the traffic situations which endangers safety for autonomous driving vehicles. In this article, we propose a traffic video multicasting scheme by using video splitting and group splitting techniques for unmanned aerial vehicles (UAVs)-assisted ITS, in which UAVs are considered as the eyes in the sky to capture real-time traffic videos. We aim to maximize the long-term video quality received by vehicles by jointly optimizing vehicle grouping and spectrum allocation. Considering the interactions among UAVs, the above optimization problem is formulated as a multiagent coordination problem in the form of a Markov game (MG). The MG is subsequently solved by leveraging a state-of-the-art multiagent deep reinforcement learning (MADRL) algorithm, namely, multiactor attention critic (MAAC), in which an attention mechanism is utilized to pay attention to other agents to make the learning process more effective and scalable. Extensive simulation results show that the MAAC-based algorithm has better performance in terms of video quality and spectrum efficiency compared with the baseline methods.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JIOT.2023.3282936</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1093-4865</orcidid><orcidid>https://orcid.org/0000-0002-0724-437X</orcidid><orcidid>https://orcid.org/0000-0001-9894-7195</orcidid><orcidid>https://orcid.org/0000-0002-7860-0554</orcidid><orcidid>https://orcid.org/0000-0002-7986-4244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2023-11, Vol.10 (22), p.19740-19752 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2884893440 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Deep learning Intelligent transportation systems Machine learning Multiagent systems Multicasting Optimization Spectrum allocation Splitting Unmanned aerial vehicles |
title | Live Traffic Video Multicasting Services in UAV-Assisted Intelligent Transport Systems: A Multiactor Attention Critic Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live%20Traffic%20Video%20Multicasting%20Services%20in%20UAV-Assisted%20Intelligent%20Transport%20Systems:%20A%20Multiactor%20Attention%20Critic%20Approach&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Fu,%20Fang&rft.date=2023-11-15&rft.volume=10&rft.issue=22&rft.spage=19740&rft.epage=19752&rft.pages=19740-19752&rft.issn=2327-4662&rft.eissn=2327-4662&rft_id=info:doi/10.1109/JIOT.2023.3282936&rft_dat=%3Cproquest_cross%3E2884893440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884893440&rft_id=info:pmid/&rfr_iscdi=true |