A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots

The sampling-based motion planners, including the Rapidly-exploring Random Trees (RRT) algorithms, are widely utilized in continuum robots, enabling efficient search for feasible motion plans in constrained environments. In surgical robotics, complex mapping among the high-dimensional kinematics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8200-8207
Hauptverfasser: Chen, Jibiao, Yan, Junyan, Qiu, Yufu, Fang, Haiyang, Chen, Jianghua, Cheng, Shing Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8207
container_issue 12
container_start_page 8200
container_title IEEE robotics and automation letters
container_volume 8
creator Chen, Jibiao
Yan, Junyan
Qiu, Yufu
Fang, Haiyang
Chen, Jianghua
Cheng, Shing Shin
description The sampling-based motion planners, including the Rapidly-exploring Random Trees (RRT) algorithms, are widely utilized in continuum robots, enabling efficient search for feasible motion plans in constrained environments. In surgical robotics, complex mapping among the high-dimensional kinematics of continuum robots, trajectory parameterization, and path redundancy may lead to non-optimal motion path, which in turn affects their efficiency and surgical task performance (e.g. path following), and ultimately the patient outcome. In this letter, a cross-entropy (CE) motion planning framework is proposed for continuum robots, wherein the RRT * planner is equipped with a CE estimation method serving as a probabilistic model to sample elite trajectories with optimal computation costs. It can asymptotically optimize the sampling distributions among individuals in terms of either robot states or parameterized trajectories. The presented CE motion planners were implemented on a hybrid continuum robot to enable obstacle avoidance, approximate follow-the-leader (FTL) motion, and navigation in a clinical scenario. They are shown to offer lower sampling cost and higher computational efficiency compared to existing approaches.
doi_str_mv 10.1109/LRA.2023.3325777
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2884893277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287401</ieee_id><sourcerecordid>2884893277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7c6ab6bb32112c0ccd4dc4acbb37d88f4ee4fc24c152bafe32a4a34e676a0f8a3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWGrvHjwEPO-aTNJN9liW1goVpeg5ZLOJbG2Tmuwi_ffd0h56mmF4b-bNh9AjJTmlpHxZrWc5EGA5YzAVQtygETAhMiaK4vaqv0eTlDaEEDoFwcrpCM1nuIohpWzuuxj2B_weujZ4_LnV3rf-By-i3tn_EH-xCxEvD3VsG1wF37W-73d4HerQpQd05_Q22cmljtH3Yv5VLbPVx-tbNVtlBkroMmEKXRd1zYBSMMSYhjeGazNMRCOl49ZyZ4CbIV6tnWWguWbcFqLQxEnNxuj5vHcfw19vU6c2oY9-OKlASi5LBkIMKnJWmdNn0Tq1j-1Ox4OiRJ14qYGXOvFSF16D5elsaa21V3KQghPKjvklZtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893277</pqid></control><display><type>article</type><title>A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jibiao ; Yan, Junyan ; Qiu, Yufu ; Fang, Haiyang ; Chen, Jianghua ; Cheng, Shing Shin</creator><creatorcontrib>Chen, Jibiao ; Yan, Junyan ; Qiu, Yufu ; Fang, Haiyang ; Chen, Jianghua ; Cheng, Shing Shin</creatorcontrib><description>The sampling-based motion planners, including the Rapidly-exploring Random Trees (RRT) algorithms, are widely utilized in continuum robots, enabling efficient search for feasible motion plans in constrained environments. In surgical robotics, complex mapping among the high-dimensional kinematics of continuum robots, trajectory parameterization, and path redundancy may lead to non-optimal motion path, which in turn affects their efficiency and surgical task performance (e.g. path following), and ultimately the patient outcome. In this letter, a cross-entropy (CE) motion planning framework is proposed for continuum robots, wherein the RRT * planner is equipped with a CE estimation method serving as a probabilistic model to sample elite trajectories with optimal computation costs. It can asymptotically optimize the sampling distributions among individuals in terms of either robot states or parameterized trajectories. The presented CE motion planners were implemented on a hybrid continuum robot to enable obstacle avoidance, approximate follow-the-leader (FTL) motion, and navigation in a clinical scenario. They are shown to offer lower sampling cost and higher computational efficiency compared to existing approaches.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3325777</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Continuum robots ; cross-entropy (CE) motion planning ; Electron tubes ; Entropy (Information theory) ; Kinematics ; Motion planning ; Motion segmentation ; Obstacle avoidance ; Parameterization ; Planning ; Probabilistic models ; Rapidly-exploring Random Trees (RRT) approach ; Redundancy ; Robot dynamics ; Robot kinematics ; Robotics ; Robots ; Sampling ; sampling-based motion planning ; Trajectory ; Trajectory optimization ; Trajectory planning</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8200-8207</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7c6ab6bb32112c0ccd4dc4acbb37d88f4ee4fc24c152bafe32a4a34e676a0f8a3</citedby><cites>FETCH-LOGICAL-c292t-7c6ab6bb32112c0ccd4dc4acbb37d88f4ee4fc24c152bafe32a4a34e676a0f8a3</cites><orcidid>0000-0002-9873-4138 ; 0000-0002-6587-2737 ; 0000-0002-8177-7465 ; 0000-0001-6271-5819 ; 0000-0002-8031-1356 ; 0000-0002-9386-5497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jibiao</creatorcontrib><creatorcontrib>Yan, Junyan</creatorcontrib><creatorcontrib>Qiu, Yufu</creatorcontrib><creatorcontrib>Fang, Haiyang</creatorcontrib><creatorcontrib>Chen, Jianghua</creatorcontrib><creatorcontrib>Cheng, Shing Shin</creatorcontrib><title>A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The sampling-based motion planners, including the Rapidly-exploring Random Trees (RRT) algorithms, are widely utilized in continuum robots, enabling efficient search for feasible motion plans in constrained environments. In surgical robotics, complex mapping among the high-dimensional kinematics of continuum robots, trajectory parameterization, and path redundancy may lead to non-optimal motion path, which in turn affects their efficiency and surgical task performance (e.g. path following), and ultimately the patient outcome. In this letter, a cross-entropy (CE) motion planning framework is proposed for continuum robots, wherein the RRT * planner is equipped with a CE estimation method serving as a probabilistic model to sample elite trajectories with optimal computation costs. It can asymptotically optimize the sampling distributions among individuals in terms of either robot states or parameterized trajectories. The presented CE motion planners were implemented on a hybrid continuum robot to enable obstacle avoidance, approximate follow-the-leader (FTL) motion, and navigation in a clinical scenario. They are shown to offer lower sampling cost and higher computational efficiency compared to existing approaches.</description><subject>Algorithms</subject><subject>Continuum robots</subject><subject>cross-entropy (CE) motion planning</subject><subject>Electron tubes</subject><subject>Entropy (Information theory)</subject><subject>Kinematics</subject><subject>Motion planning</subject><subject>Motion segmentation</subject><subject>Obstacle avoidance</subject><subject>Parameterization</subject><subject>Planning</subject><subject>Probabilistic models</subject><subject>Rapidly-exploring Random Trees (RRT) approach</subject><subject>Redundancy</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sampling</subject><subject>sampling-based motion planning</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMoWGrvHjwEPO-aTNJN9liW1goVpeg5ZLOJbG2Tmuwi_ffd0h56mmF4b-bNh9AjJTmlpHxZrWc5EGA5YzAVQtygETAhMiaK4vaqv0eTlDaEEDoFwcrpCM1nuIohpWzuuxj2B_weujZ4_LnV3rf-By-i3tn_EH-xCxEvD3VsG1wF37W-73d4HerQpQd05_Q22cmljtH3Yv5VLbPVx-tbNVtlBkroMmEKXRd1zYBSMMSYhjeGazNMRCOl49ZyZ4CbIV6tnWWguWbcFqLQxEnNxuj5vHcfw19vU6c2oY9-OKlASi5LBkIMKnJWmdNn0Tq1j-1Ox4OiRJ14qYGXOvFSF16D5elsaa21V3KQghPKjvklZtQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Chen, Jibiao</creator><creator>Yan, Junyan</creator><creator>Qiu, Yufu</creator><creator>Fang, Haiyang</creator><creator>Chen, Jianghua</creator><creator>Cheng, Shing Shin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9873-4138</orcidid><orcidid>https://orcid.org/0000-0002-6587-2737</orcidid><orcidid>https://orcid.org/0000-0002-8177-7465</orcidid><orcidid>https://orcid.org/0000-0001-6271-5819</orcidid><orcidid>https://orcid.org/0000-0002-8031-1356</orcidid><orcidid>https://orcid.org/0000-0002-9386-5497</orcidid></search><sort><creationdate>20231201</creationdate><title>A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots</title><author>Chen, Jibiao ; Yan, Junyan ; Qiu, Yufu ; Fang, Haiyang ; Chen, Jianghua ; Cheng, Shing Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7c6ab6bb32112c0ccd4dc4acbb37d88f4ee4fc24c152bafe32a4a34e676a0f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Continuum robots</topic><topic>cross-entropy (CE) motion planning</topic><topic>Electron tubes</topic><topic>Entropy (Information theory)</topic><topic>Kinematics</topic><topic>Motion planning</topic><topic>Motion segmentation</topic><topic>Obstacle avoidance</topic><topic>Parameterization</topic><topic>Planning</topic><topic>Probabilistic models</topic><topic>Rapidly-exploring Random Trees (RRT) approach</topic><topic>Redundancy</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sampling</topic><topic>sampling-based motion planning</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jibiao</creatorcontrib><creatorcontrib>Yan, Junyan</creatorcontrib><creatorcontrib>Qiu, Yufu</creatorcontrib><creatorcontrib>Fang, Haiyang</creatorcontrib><creatorcontrib>Chen, Jianghua</creatorcontrib><creatorcontrib>Cheng, Shing Shin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jibiao</au><au>Yan, Junyan</au><au>Qiu, Yufu</au><au>Fang, Haiyang</au><au>Chen, Jianghua</au><au>Cheng, Shing Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8200</spage><epage>8207</epage><pages>8200-8207</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The sampling-based motion planners, including the Rapidly-exploring Random Trees (RRT) algorithms, are widely utilized in continuum robots, enabling efficient search for feasible motion plans in constrained environments. In surgical robotics, complex mapping among the high-dimensional kinematics of continuum robots, trajectory parameterization, and path redundancy may lead to non-optimal motion path, which in turn affects their efficiency and surgical task performance (e.g. path following), and ultimately the patient outcome. In this letter, a cross-entropy (CE) motion planning framework is proposed for continuum robots, wherein the RRT * planner is equipped with a CE estimation method serving as a probabilistic model to sample elite trajectories with optimal computation costs. It can asymptotically optimize the sampling distributions among individuals in terms of either robot states or parameterized trajectories. The presented CE motion planners were implemented on a hybrid continuum robot to enable obstacle avoidance, approximate follow-the-leader (FTL) motion, and navigation in a clinical scenario. They are shown to offer lower sampling cost and higher computational efficiency compared to existing approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3325777</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9873-4138</orcidid><orcidid>https://orcid.org/0000-0002-6587-2737</orcidid><orcidid>https://orcid.org/0000-0002-8177-7465</orcidid><orcidid>https://orcid.org/0000-0001-6271-5819</orcidid><orcidid>https://orcid.org/0000-0002-8031-1356</orcidid><orcidid>https://orcid.org/0000-0002-9386-5497</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8200-8207
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2884893277
source IEEE Electronic Library (IEL)
subjects Algorithms
Continuum robots
cross-entropy (CE) motion planning
Electron tubes
Entropy (Information theory)
Kinematics
Motion planning
Motion segmentation
Obstacle avoidance
Parameterization
Planning
Probabilistic models
Rapidly-exploring Random Trees (RRT) approach
Redundancy
Robot dynamics
Robot kinematics
Robotics
Robots
Sampling
sampling-based motion planning
Trajectory
Trajectory optimization
Trajectory planning
title A Cross-Entropy Motion Planning Framework for Hybrid Continuum Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross-Entropy%20Motion%20Planning%20Framework%20for%20Hybrid%20Continuum%20Robots&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Chen,%20Jibiao&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8200&rft.epage=8207&rft.pages=8200-8207&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3325777&rft_dat=%3Cproquest_RIE%3E2884893277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884893277&rft_id=info:pmid/&rft_ieee_id=10287401&rfr_iscdi=true