Deep learning for COVID ‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4

This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2023-11, Vol.33 (6), p.1858-1869
Hauptverfasser: Mhamdi, Lotfi, Dammak, Oussama, Cottin, François, Ben Dhaou, Imed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1869
container_issue 6
container_start_page 1858
container_title International journal of imaging systems and technology
container_volume 33
creator Mhamdi, Lotfi
Dammak, Oussama
Cottin, François
Ben Dhaou, Imed
description This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (healthy subjects and COVID‐19 positive cases). Indeed, this virus attacks the human respiratory system, which could affect the heart system. Thus, developing a deep learning model could help for a quick and efficient diagnosis, prediction, and physician decision‐making. The performed deep learning model will be used for predicting abnormal cardiac activities consequent to the contamination by the virus. The overall classification rate achieved by the models was 99.34% and 99.67% for MobileNetV2 and VGG16, respectively. Therefore, this approach can efficiently contribute to the diagnosis of COVID‐19 contamination.
doi_str_mv 10.1002/ima.22965
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884582120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884582120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-ef1ee6552c5f123955b885f3cd16a52a1bcd9c0bb005e377963a67cb7799983c3</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKBP7DEiUOKH3ViH1H6oFKlIgRcLcdZV67aJNjpoTc-gW_kS3BbLruzo9nd0SB0T8mIEsKe_M6MGFO5uEADSpTMjuUSDYhUKlNjUVyjmxg3hFAqiBggNwHo8BZMaHyzxq4NuFx9Lib49_uHKmzbpjc735jetw02jdkeoo8J1LgLUHt74vfxuDst5zi9X0PEiXszsasghAN-9Xh8i66c2Ua4--9D9DGbvpcv2XI1X5TPy8wyWvQZOAqQC8GscJRxJUQlpXDc1jQ3ghla2VpZUlWECOBFoXJu8sJWCSklueVD9HC-24X2aw-x15t2H5LtqJmUYyEZZSSpHs8qG9oYAzjdheQ8HDQl-hijTpM-xcj_AIX7ZM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884582120</pqid></control><display><type>article</type><title>Deep learning for COVID ‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mhamdi, Lotfi ; Dammak, Oussama ; Cottin, François ; Ben Dhaou, Imed</creator><creatorcontrib>Mhamdi, Lotfi ; Dammak, Oussama ; Cottin, François ; Ben Dhaou, Imed</creatorcontrib><description>This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (healthy subjects and COVID‐19 positive cases). Indeed, this virus attacks the human respiratory system, which could affect the heart system. Thus, developing a deep learning model could help for a quick and efficient diagnosis, prediction, and physician decision‐making. The performed deep learning model will be used for predicting abnormal cardiac activities consequent to the contamination by the virus. The overall classification rate achieved by the models was 99.34% and 99.67% for MobileNetV2 and VGG16, respectively. Therefore, this approach can efficiently contribute to the diagnosis of COVID‐19 contamination.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22965</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Abnormalities ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Contamination ; COVID-19 ; Deep learning ; Diagnosis ; Machine learning ; Respiratory system ; Viral diseases ; Viruses</subject><ispartof>International journal of imaging systems and technology, 2023-11, Vol.33 (6), p.1858-1869</ispartof><rights>2023 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-ef1ee6552c5f123955b885f3cd16a52a1bcd9c0bb005e377963a67cb7799983c3</cites><orcidid>0000-0003-3339-0845 ; 0000-0002-0938-2450 ; 0000-0002-7950-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mhamdi, Lotfi</creatorcontrib><creatorcontrib>Dammak, Oussama</creatorcontrib><creatorcontrib>Cottin, François</creatorcontrib><creatorcontrib>Ben Dhaou, Imed</creatorcontrib><title>Deep learning for COVID ‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4</title><title>International journal of imaging systems and technology</title><description>This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (healthy subjects and COVID‐19 positive cases). Indeed, this virus attacks the human respiratory system, which could affect the heart system. Thus, developing a deep learning model could help for a quick and efficient diagnosis, prediction, and physician decision‐making. The performed deep learning model will be used for predicting abnormal cardiac activities consequent to the contamination by the virus. The overall classification rate achieved by the models was 99.34% and 99.67% for MobileNetV2 and VGG16, respectively. Therefore, this approach can efficiently contribute to the diagnosis of COVID‐19 contamination.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Contamination</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Machine learning</subject><subject>Respiratory system</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMKBP7DEiUOKH3ViH1H6oFKlIgRcLcdZV67aJNjpoTc-gW_kS3BbLruzo9nd0SB0T8mIEsKe_M6MGFO5uEADSpTMjuUSDYhUKlNjUVyjmxg3hFAqiBggNwHo8BZMaHyzxq4NuFx9Lib49_uHKmzbpjc735jetw02jdkeoo8J1LgLUHt74vfxuDst5zi9X0PEiXszsasghAN-9Xh8i66c2Ua4--9D9DGbvpcv2XI1X5TPy8wyWvQZOAqQC8GscJRxJUQlpXDc1jQ3ghla2VpZUlWECOBFoXJu8sJWCSklueVD9HC-24X2aw-x15t2H5LtqJmUYyEZZSSpHs8qG9oYAzjdheQ8HDQl-hijTpM-xcj_AIX7ZM0</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Mhamdi, Lotfi</creator><creator>Dammak, Oussama</creator><creator>Cottin, François</creator><creator>Ben Dhaou, Imed</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3339-0845</orcidid><orcidid>https://orcid.org/0000-0002-0938-2450</orcidid><orcidid>https://orcid.org/0000-0002-7950-2163</orcidid></search><sort><creationdate>202311</creationdate><title>Deep learning for COVID ‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4</title><author>Mhamdi, Lotfi ; Dammak, Oussama ; Cottin, François ; Ben Dhaou, Imed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-ef1ee6552c5f123955b885f3cd16a52a1bcd9c0bb005e377963a67cb7799983c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Contamination</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Machine learning</topic><topic>Respiratory system</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mhamdi, Lotfi</creatorcontrib><creatorcontrib>Dammak, Oussama</creatorcontrib><creatorcontrib>Cottin, François</creatorcontrib><creatorcontrib>Ben Dhaou, Imed</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mhamdi, Lotfi</au><au>Dammak, Oussama</au><au>Cottin, François</au><au>Ben Dhaou, Imed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for COVID ‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2023-11</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><spage>1858</spage><epage>1869</epage><pages>1858-1869</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (healthy subjects and COVID‐19 positive cases). Indeed, this virus attacks the human respiratory system, which could affect the heart system. Thus, developing a deep learning model could help for a quick and efficient diagnosis, prediction, and physician decision‐making. The performed deep learning model will be used for predicting abnormal cardiac activities consequent to the contamination by the virus. The overall classification rate achieved by the models was 99.34% and 99.67% for MobileNetV2 and VGG16, respectively. Therefore, this approach can efficiently contribute to the diagnosis of COVID‐19 contamination.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ima.22965</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3339-0845</orcidid><orcidid>https://orcid.org/0000-0002-0938-2450</orcidid><orcidid>https://orcid.org/0000-0002-7950-2163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2023-11, Vol.33 (6), p.1858-1869
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2884582120
source Wiley Online Library Journals Frontfile Complete
subjects Abnormalities
Algorithms
Artificial intelligence
Artificial neural networks
Contamination
COVID-19
Deep learning
Diagnosis
Machine learning
Respiratory system
Viral diseases
Viruses
title Deep learning for COVID ‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20COVID%20%E2%80%9019%20contamination%20analysis%20and%20prediction%20using%20ECG%20images%20on%20Raspberry%20Pi%204&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Mhamdi,%20Lotfi&rft.date=2023-11&rft.volume=33&rft.issue=6&rft.spage=1858&rft.epage=1869&rft.pages=1858-1869&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22965&rft_dat=%3Cproquest_cross%3E2884582120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884582120&rft_id=info:pmid/&rfr_iscdi=true