Selective Construction of Borromean Rings and Tweezer‐Like Molecular Assembly Featuring CpRh/Ir Clips for Near‐Infrared Photothermal Conversion

Making full use of coordination‐driven self‐assembly strategy, we herein described the selective synthesis of a molecular Borromean rings and two cases of “U”‐shaped tweezer‐like molecular assemblies in high yield by using bipyridyl ligands based on biphenyl unit and half‐sandwich binuclear rhodium(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemistry 2023-12, Vol.41 (23), p.3229-3237
Hauptverfasser: Zou, Yan, Zhang, Hai‐Ning, Mu, Qiu‐Shui, Dang, Li‐Long, Jin, Guo‐Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Making full use of coordination‐driven self‐assembly strategy, we herein described the selective synthesis of a molecular Borromean rings and two cases of “U”‐shaped tweezer‐like molecular assemblies in high yield by using bipyridyl ligands based on biphenyl unit and half‐sandwich binuclear rhodium(III)/iridium(III) building blocks. The selective synthesis was realized by adjusting the length of dipyridyl arms. The utilization of curved U‐shaped bipyridyl ligand L1 led to tweezer‐like molecular assemblies. Subsequently, olefinic bonds were introduced to elongate dipyridyl arms obtaining ligand L2 . The ligand L2 has two stable conformations, U‐shape and Z‐shape, which facilitated the formation of different topologies including the tetranuclear macrocycle and Borromean rings with different building blocks in this work. These structures in solid and solution all have been further confirmed by single‐crystal X‐ray diffraction, NMR analysis, and mass spectrometry. In addition, as an important driving force, π‐π stacking interactions not only played a significant role in the stability of structures but also further triggered photothermal conversion in solution. The experimental results demonstrated that compounds 1a and 2 had good NIR photothermal conversion efficiency (11.83% and 17.76%), and further analysis found the photothermal conversion efficiency had a gradual increase in the trend with the π‐π stacking interactions increasing. This research expands the application of topological structures in materials science and provides a new idea for the synthesis of novel photothermal conversion materials.
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.202300359