Optimizing Task-Specific Timeliness With Edge-Assisted Scheduling for Status Update

Intelligent real-time applications, such as video surveillance, demand intensive computation to extract status information from raw sensing data. This poses a substantial challenge in orchestrating computation and communication resources to provide fresh status information. In this paper, we conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Sun, Jingzhou, Wang, Lehan, Nan, Zhaojun, Sun, Yuxuan, Zhou, Sheng, Niu, Zhisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sun, Jingzhou
Wang, Lehan
Nan, Zhaojun
Sun, Yuxuan
Zhou, Sheng
Niu, Zhisheng
description Intelligent real-time applications, such as video surveillance, demand intensive computation to extract status information from raw sensing data. This poses a substantial challenge in orchestrating computation and communication resources to provide fresh status information. In this paper, we consider a scenario where multiple energy-constrained devices served by an edge server. To extract status information, each device can either do the computation locally or offload it to the edge server. A scheduling policy is needed to determine when and where to compute for each device, taking into account communication and computation capabilities, as well as task-specific timeliness requirements. To that end, we first model the timeliness requirements as general penalty functions of Age of Information (AoI). A convex optimization problem is formulated to provide a lower bound of the minimum AoI penalty given system parameters. Using KKT conditions, we proposed a novel scheduling policy which evaluates status update priorities based on communication and computation delays and task-specific timeliness requirements. The proposed policy is applied to an object tracking application and carried out on a large video dataset. Simulation results show that our policy improves tracking accuracy compared with scheduling policies based on video content information.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884476418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884476418</sourcerecordid><originalsourceid>FETCH-proquest_journals_28844764183</originalsourceid><addsrcrecordid>eNqNi7sKwjAUQIMgWLT_EHAutGn6WEUqbg6pOEpobttb-7I3Wfx6FfwApzOcc1bME3EcBbkUYsN8oi4MQ5FmIklij6nLbHHAF44NLzU9AjVDhTVWvMQBehyBiN_QtrwwDQQHIiQLhquqBeP671ZPC1dWW0f8OhttYcfWte4J_B-3bH8qyuM5mJfp6YDsvZvcMn7UXeS5lFkqozz-r3oDOHJAHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884476418</pqid></control><display><type>article</type><title>Optimizing Task-Specific Timeliness With Edge-Assisted Scheduling for Status Update</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Sun, Jingzhou ; Wang, Lehan ; Nan, Zhaojun ; Sun, Yuxuan ; Zhou, Sheng ; Niu, Zhisheng</creator><creatorcontrib>Sun, Jingzhou ; Wang, Lehan ; Nan, Zhaojun ; Sun, Yuxuan ; Zhou, Sheng ; Niu, Zhisheng</creatorcontrib><description>Intelligent real-time applications, such as video surveillance, demand intensive computation to extract status information from raw sensing data. This poses a substantial challenge in orchestrating computation and communication resources to provide fresh status information. In this paper, we consider a scenario where multiple energy-constrained devices served by an edge server. To extract status information, each device can either do the computation locally or offload it to the edge server. A scheduling policy is needed to determine when and where to compute for each device, taking into account communication and computation capabilities, as well as task-specific timeliness requirements. To that end, we first model the timeliness requirements as general penalty functions of Age of Information (AoI). A convex optimization problem is formulated to provide a lower bound of the minimum AoI penalty given system parameters. Using KKT conditions, we proposed a novel scheduling policy which evaluates status update priorities based on communication and computation delays and task-specific timeliness requirements. The proposed policy is applied to an object tracking application and carried out on a large video dataset. Simulation results show that our policy improves tracking accuracy compared with scheduling policies based on video content information.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Communication ; Convexity ; Edge computing ; Lower bounds ; Optimization ; Penalty function ; Scheduling ; Servers ; Task scheduling ; Tracking</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sun, Jingzhou</creatorcontrib><creatorcontrib>Wang, Lehan</creatorcontrib><creatorcontrib>Nan, Zhaojun</creatorcontrib><creatorcontrib>Sun, Yuxuan</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Niu, Zhisheng</creatorcontrib><title>Optimizing Task-Specific Timeliness With Edge-Assisted Scheduling for Status Update</title><title>arXiv.org</title><description>Intelligent real-time applications, such as video surveillance, demand intensive computation to extract status information from raw sensing data. This poses a substantial challenge in orchestrating computation and communication resources to provide fresh status information. In this paper, we consider a scenario where multiple energy-constrained devices served by an edge server. To extract status information, each device can either do the computation locally or offload it to the edge server. A scheduling policy is needed to determine when and where to compute for each device, taking into account communication and computation capabilities, as well as task-specific timeliness requirements. To that end, we first model the timeliness requirements as general penalty functions of Age of Information (AoI). A convex optimization problem is formulated to provide a lower bound of the minimum AoI penalty given system parameters. Using KKT conditions, we proposed a novel scheduling policy which evaluates status update priorities based on communication and computation delays and task-specific timeliness requirements. The proposed policy is applied to an object tracking application and carried out on a large video dataset. Simulation results show that our policy improves tracking accuracy compared with scheduling policies based on video content information.</description><subject>Communication</subject><subject>Convexity</subject><subject>Edge computing</subject><subject>Lower bounds</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Scheduling</subject><subject>Servers</subject><subject>Task scheduling</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAUQIMgWLT_EHAutGn6WEUqbg6pOEpobttb-7I3Wfx6FfwApzOcc1bME3EcBbkUYsN8oi4MQ5FmIklij6nLbHHAF44NLzU9AjVDhTVWvMQBehyBiN_QtrwwDQQHIiQLhquqBeP671ZPC1dWW0f8OhttYcfWte4J_B-3bH8qyuM5mJfp6YDsvZvcMn7UXeS5lFkqozz-r3oDOHJAHw</recordid><startdate>20231029</startdate><enddate>20231029</enddate><creator>Sun, Jingzhou</creator><creator>Wang, Lehan</creator><creator>Nan, Zhaojun</creator><creator>Sun, Yuxuan</creator><creator>Zhou, Sheng</creator><creator>Niu, Zhisheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231029</creationdate><title>Optimizing Task-Specific Timeliness With Edge-Assisted Scheduling for Status Update</title><author>Sun, Jingzhou ; Wang, Lehan ; Nan, Zhaojun ; Sun, Yuxuan ; Zhou, Sheng ; Niu, Zhisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28844764183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Communication</topic><topic>Convexity</topic><topic>Edge computing</topic><topic>Lower bounds</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Scheduling</topic><topic>Servers</topic><topic>Task scheduling</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jingzhou</creatorcontrib><creatorcontrib>Wang, Lehan</creatorcontrib><creatorcontrib>Nan, Zhaojun</creatorcontrib><creatorcontrib>Sun, Yuxuan</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Niu, Zhisheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jingzhou</au><au>Wang, Lehan</au><au>Nan, Zhaojun</au><au>Sun, Yuxuan</au><au>Zhou, Sheng</au><au>Niu, Zhisheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing Task-Specific Timeliness With Edge-Assisted Scheduling for Status Update</atitle><jtitle>arXiv.org</jtitle><date>2023-10-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Intelligent real-time applications, such as video surveillance, demand intensive computation to extract status information from raw sensing data. This poses a substantial challenge in orchestrating computation and communication resources to provide fresh status information. In this paper, we consider a scenario where multiple energy-constrained devices served by an edge server. To extract status information, each device can either do the computation locally or offload it to the edge server. A scheduling policy is needed to determine when and where to compute for each device, taking into account communication and computation capabilities, as well as task-specific timeliness requirements. To that end, we first model the timeliness requirements as general penalty functions of Age of Information (AoI). A convex optimization problem is formulated to provide a lower bound of the minimum AoI penalty given system parameters. Using KKT conditions, we proposed a novel scheduling policy which evaluates status update priorities based on communication and computation delays and task-specific timeliness requirements. The proposed policy is applied to an object tracking application and carried out on a large video dataset. Simulation results show that our policy improves tracking accuracy compared with scheduling policies based on video content information.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2884476418
source Open Access: Freely Accessible Journals by multiple vendors
subjects Communication
Convexity
Edge computing
Lower bounds
Optimization
Penalty function
Scheduling
Servers
Task scheduling
Tracking
title Optimizing Task-Specific Timeliness With Edge-Assisted Scheduling for Status Update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20Task-Specific%20Timeliness%20With%20Edge-Assisted%20Scheduling%20for%20Status%20Update&rft.jtitle=arXiv.org&rft.au=Sun,%20Jingzhou&rft.date=2023-10-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884476418%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884476418&rft_id=info:pmid/&rfr_iscdi=true