3DCoMPaT\(^{++}\): An improved Large-scale 3D Vision Dataset for Compositional Recognition
In this work, we present 3DCoMPaT\(^{++}\), a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT\(^{+...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Habib Slim Li, Xiang Li, Yuchen Ahmed, Mahmoud Mohamed, Ayman Upadhyay, Ujjwal Abdelreheem, Ahmed Prajapati, Arpit Pothigara, Suhail Wonka, Peter Elhoseiny, Mohamed |
description | In this work, we present 3DCoMPaT\(^{++}\), a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT\(^{++}\) covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet\(^{++}\) model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884468766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884468766</sourcerecordid><originalsourceid>FETCH-proquest_journals_28844687663</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSIMnZxzvcNSAyJ0Yir1taujdG0UnDMU8jMLSjKL0tNUfBJLEpP1S1OTsxJVTB2UQjLLM7Mz1NwSSxJLE4tUUjLL1Jwzs8tyC_OLAGKJ-YoBKUm56fngXk8DKxpiTnFqbxQmptB2c01xNlDF2h0YWlqcUl8Vn5pEVBTcbyRhYWJiZmFuZmZMXGqAOfZQPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884468766</pqid></control><display><type>article</type><title>3DCoMPaT\(^{++}\): An improved Large-scale 3D Vision Dataset for Compositional Recognition</title><source>Free E- Journals</source><creator>Habib Slim ; Li, Xiang ; Li, Yuchen ; Ahmed, Mahmoud ; Mohamed, Ayman ; Upadhyay, Ujjwal ; Abdelreheem, Ahmed ; Prajapati, Arpit ; Pothigara, Suhail ; Wonka, Peter ; Elhoseiny, Mohamed</creator><creatorcontrib>Habib Slim ; Li, Xiang ; Li, Yuchen ; Ahmed, Mahmoud ; Mohamed, Ayman ; Upadhyay, Ujjwal ; Abdelreheem, Ahmed ; Prajapati, Arpit ; Pothigara, Suhail ; Wonka, Peter ; Elhoseiny, Mohamed</creatorcontrib><description>In this work, we present 3DCoMPaT\(^{++}\), a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT\(^{++}\) covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet\(^{++}\) model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Recognition ; Three dimensional models</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Habib Slim</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Ahmed, Mahmoud</creatorcontrib><creatorcontrib>Mohamed, Ayman</creatorcontrib><creatorcontrib>Upadhyay, Ujjwal</creatorcontrib><creatorcontrib>Abdelreheem, Ahmed</creatorcontrib><creatorcontrib>Prajapati, Arpit</creatorcontrib><creatorcontrib>Pothigara, Suhail</creatorcontrib><creatorcontrib>Wonka, Peter</creatorcontrib><creatorcontrib>Elhoseiny, Mohamed</creatorcontrib><title>3DCoMPaT\(^{++}\): An improved Large-scale 3D Vision Dataset for Compositional Recognition</title><title>arXiv.org</title><description>In this work, we present 3DCoMPaT\(^{++}\), a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT\(^{++}\) covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet\(^{++}\) model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.</description><subject>Datasets</subject><subject>Recognition</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSIMnZxzvcNSAyJ0Yir1taujdG0UnDMU8jMLSjKL0tNUfBJLEpP1S1OTsxJVTB2UQjLLM7Mz1NwSSxJLE4tUUjLL1Jwzs8tyC_OLAGKJ-YoBKUm56fngXk8DKxpiTnFqbxQmptB2c01xNlDF2h0YWlqcUl8Vn5pEVBTcbyRhYWJiZmFuZmZMXGqAOfZQPI</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Habib Slim</creator><creator>Li, Xiang</creator><creator>Li, Yuchen</creator><creator>Ahmed, Mahmoud</creator><creator>Mohamed, Ayman</creator><creator>Upadhyay, Ujjwal</creator><creator>Abdelreheem, Ahmed</creator><creator>Prajapati, Arpit</creator><creator>Pothigara, Suhail</creator><creator>Wonka, Peter</creator><creator>Elhoseiny, Mohamed</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240312</creationdate><title>3DCoMPaT\(^{++}\): An improved Large-scale 3D Vision Dataset for Compositional Recognition</title><author>Habib Slim ; Li, Xiang ; Li, Yuchen ; Ahmed, Mahmoud ; Mohamed, Ayman ; Upadhyay, Ujjwal ; Abdelreheem, Ahmed ; Prajapati, Arpit ; Pothigara, Suhail ; Wonka, Peter ; Elhoseiny, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28844687663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Recognition</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Habib Slim</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Ahmed, Mahmoud</creatorcontrib><creatorcontrib>Mohamed, Ayman</creatorcontrib><creatorcontrib>Upadhyay, Ujjwal</creatorcontrib><creatorcontrib>Abdelreheem, Ahmed</creatorcontrib><creatorcontrib>Prajapati, Arpit</creatorcontrib><creatorcontrib>Pothigara, Suhail</creatorcontrib><creatorcontrib>Wonka, Peter</creatorcontrib><creatorcontrib>Elhoseiny, Mohamed</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habib Slim</au><au>Li, Xiang</au><au>Li, Yuchen</au><au>Ahmed, Mahmoud</au><au>Mohamed, Ayman</au><au>Upadhyay, Ujjwal</au><au>Abdelreheem, Ahmed</au><au>Prajapati, Arpit</au><au>Pothigara, Suhail</au><au>Wonka, Peter</au><au>Elhoseiny, Mohamed</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>3DCoMPaT\(^{++}\): An improved Large-scale 3D Vision Dataset for Compositional Recognition</atitle><jtitle>arXiv.org</jtitle><date>2024-03-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we present 3DCoMPaT\(^{++}\), a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT\(^{++}\) covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet\(^{++}\) model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2884468766 |
source | Free E- Journals |
subjects | Datasets Recognition Three dimensional models |
title | 3DCoMPaT\(^{++}\): An improved Large-scale 3D Vision Dataset for Compositional Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=3DCoMPaT%5C(%5E%7B++%7D%5C):%20An%20improved%20Large-scale%203D%20Vision%20Dataset%20for%20Compositional%20Recognition&rft.jtitle=arXiv.org&rft.au=Habib%20Slim&rft.date=2024-03-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884468766%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884468766&rft_id=info:pmid/&rfr_iscdi=true |