Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria
We describe a new mechanism that triggers periodic orbits in smooth dynamical systems. To this end, we introduce the concept of hybrid bifurcations: Such bifurcations occur when a line of equilibria with an exchange point of normal stability vanishes. Our main result is the existence and stability c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | López-Nieto, Alejandro Lappicy, Phillipo Vassena, Nicola Stuke, Hannes Jia-Yuan, Dai |
description | We describe a new mechanism that triggers periodic orbits in smooth dynamical systems. To this end, we introduce the concept of hybrid bifurcations: Such bifurcations occur when a line of equilibria with an exchange point of normal stability vanishes. Our main result is the existence and stability criteria of periodic orbits that bifurcate from breaking a line of equilibria. As an application, we obtain stable periodic coexistent solutions in an ecosystem for two competing predators with Holling's type II functional response. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884468714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884468714</sourcerecordid><originalsourceid>FETCH-proquest_journals_28844687143</originalsourceid><addsrcrecordid>eNqNi7EOgjAUABsTE4nyDy9xJoG2QOOogTA4OLiTCq15BFpp6cDfy-AHON1wdzsSUcayRHBKDyT2fkjTlBYlzXMWkbpZXw57uKIOrpMLWuMv8FAObY8dLitoZyeoRpzQbNq8QcIdjQKroZoDjrj98kT2Wo5exT8eybmunrcm-Tg7B-WXdrDBmU21VAjOC1FmnP1XfQGt2zsn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884468714</pqid></control><display><type>article</type><title>Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria</title><source>Free E- Journals</source><creator>López-Nieto, Alejandro ; Lappicy, Phillipo ; Vassena, Nicola ; Stuke, Hannes ; Jia-Yuan, Dai</creator><creatorcontrib>López-Nieto, Alejandro ; Lappicy, Phillipo ; Vassena, Nicola ; Stuke, Hannes ; Jia-Yuan, Dai</creatorcontrib><description>We describe a new mechanism that triggers periodic orbits in smooth dynamical systems. To this end, we introduce the concept of hybrid bifurcations: Such bifurcations occur when a line of equilibria with an exchange point of normal stability vanishes. Our main result is the existence and stability criteria of periodic orbits that bifurcate from breaking a line of equilibria. As an application, we obtain stable periodic coexistent solutions in an ecosystem for two competing predators with Holling's type II functional response.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bifurcations ; Orbits ; Predators ; Stability criteria</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>López-Nieto, Alejandro</creatorcontrib><creatorcontrib>Lappicy, Phillipo</creatorcontrib><creatorcontrib>Vassena, Nicola</creatorcontrib><creatorcontrib>Stuke, Hannes</creatorcontrib><creatorcontrib>Jia-Yuan, Dai</creatorcontrib><title>Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria</title><title>arXiv.org</title><description>We describe a new mechanism that triggers periodic orbits in smooth dynamical systems. To this end, we introduce the concept of hybrid bifurcations: Such bifurcations occur when a line of equilibria with an exchange point of normal stability vanishes. Our main result is the existence and stability criteria of periodic orbits that bifurcate from breaking a line of equilibria. As an application, we obtain stable periodic coexistent solutions in an ecosystem for two competing predators with Holling's type II functional response.</description><subject>Bifurcations</subject><subject>Orbits</subject><subject>Predators</subject><subject>Stability criteria</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi7EOgjAUABsTE4nyDy9xJoG2QOOogTA4OLiTCq15BFpp6cDfy-AHON1wdzsSUcayRHBKDyT2fkjTlBYlzXMWkbpZXw57uKIOrpMLWuMv8FAObY8dLitoZyeoRpzQbNq8QcIdjQKroZoDjrj98kT2Wo5exT8eybmunrcm-Tg7B-WXdrDBmU21VAjOC1FmnP1XfQGt2zsn</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>López-Nieto, Alejandro</creator><creator>Lappicy, Phillipo</creator><creator>Vassena, Nicola</creator><creator>Stuke, Hannes</creator><creator>Jia-Yuan, Dai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria</title><author>López-Nieto, Alejandro ; Lappicy, Phillipo ; Vassena, Nicola ; Stuke, Hannes ; Jia-Yuan, Dai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28844687143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Orbits</topic><topic>Predators</topic><topic>Stability criteria</topic><toplevel>online_resources</toplevel><creatorcontrib>López-Nieto, Alejandro</creatorcontrib><creatorcontrib>Lappicy, Phillipo</creatorcontrib><creatorcontrib>Vassena, Nicola</creatorcontrib><creatorcontrib>Stuke, Hannes</creatorcontrib><creatorcontrib>Jia-Yuan, Dai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Nieto, Alejandro</au><au>Lappicy, Phillipo</au><au>Vassena, Nicola</au><au>Stuke, Hannes</au><au>Jia-Yuan, Dai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We describe a new mechanism that triggers periodic orbits in smooth dynamical systems. To this end, we introduce the concept of hybrid bifurcations: Such bifurcations occur when a line of equilibria with an exchange point of normal stability vanishes. Our main result is the existence and stability criteria of periodic orbits that bifurcate from breaking a line of equilibria. As an application, we obtain stable periodic coexistent solutions in an ecosystem for two competing predators with Holling's type II functional response.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2884468714 |
source | Free E- Journals |
subjects | Bifurcations Orbits Predators Stability criteria |
title | Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hybrid%20Bifurcations:%20Periodicity%20from%20Eliminating%20a%20Line%20of%20Equilibria&rft.jtitle=arXiv.org&rft.au=L%C3%B3pez-Nieto,%20Alejandro&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884468714%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884468714&rft_id=info:pmid/&rfr_iscdi=true |