The Hurewicz theorem for cubical homology

We give an elementary proof of the Hurewicz theorem relating homotopy and homology groups of a cubical Kan complex. Our approach is based on the notion of a loop space of a cubical set, developed in a companion paper “Homotopy groups of cubical sets” by the first two authors.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2023-12, Vol.305 (4), Article 61
Hauptverfasser: Carranza, Daniel, Kapulkin, Krzysztof, Tonks, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Mathematische Zeitschrift
container_volume 305
creator Carranza, Daniel
Kapulkin, Krzysztof
Tonks, Andrew
description We give an elementary proof of the Hurewicz theorem relating homotopy and homology groups of a cubical Kan complex. Our approach is based on the notion of a loop space of a cubical set, developed in a companion paper “Homotopy groups of cubical sets” by the first two authors.
doi_str_mv 10.1007/s00209-023-03352-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884227802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884227802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-321206e4f0743c224af190cc14c527db45d4ea32f0ccb085d269361f15866e6e3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgXf0DnhY8eYhOJskmPUpRKxS81HPYTZN2y7apyS5Sf73RFbx5mYF5X8wj5JrBHQNQ9wkAYUoBOQXOJVI4IRMmOFKmkZ-SScYllVqJc3KR0hYgg0pMyO1y48r5EN1Haz_LfuNCdLvSh1jaoWlt3ZWbsAtdWB8vyZmvu-SufndB3p4el7M5Xbw-v8weFtSigp5yZAiVEx6U4BZR1J5NwVomrES1aoRcCVdz9PnWgJYrrKa8Yp5JXVWucrwgN6PvIYb3waXebMMQ9znSoNYCUen8ZkFwZNkYUorOm0Nsd3U8GgbmuxIzVmIy1_xUkmdB-ChKmbxfu_hn_Y_qC9ugYXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884227802</pqid></control><display><type>article</type><title>The Hurewicz theorem for cubical homology</title><source>SpringerLink Journals</source><creator>Carranza, Daniel ; Kapulkin, Krzysztof ; Tonks, Andrew</creator><creatorcontrib>Carranza, Daniel ; Kapulkin, Krzysztof ; Tonks, Andrew</creatorcontrib><description>We give an elementary proof of the Hurewicz theorem relating homotopy and homology groups of a cubical Kan complex. Our approach is based on the notion of a loop space of a cubical set, developed in a companion paper “Homotopy groups of cubical sets” by the first two authors.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-023-03352-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Homology ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische Zeitschrift, 2023-12, Vol.305 (4), Article 61</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-321206e4f0743c224af190cc14c527db45d4ea32f0ccb085d269361f15866e6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-023-03352-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-023-03352-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carranza, Daniel</creatorcontrib><creatorcontrib>Kapulkin, Krzysztof</creatorcontrib><creatorcontrib>Tonks, Andrew</creatorcontrib><title>The Hurewicz theorem for cubical homology</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We give an elementary proof of the Hurewicz theorem relating homotopy and homology groups of a cubical Kan complex. Our approach is based on the notion of a loop space of a cubical set, developed in a companion paper “Homotopy groups of cubical sets” by the first two authors.</description><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgXf0DnhY8eYhOJskmPUpRKxS81HPYTZN2y7apyS5Sf73RFbx5mYF5X8wj5JrBHQNQ9wkAYUoBOQXOJVI4IRMmOFKmkZ-SScYllVqJc3KR0hYgg0pMyO1y48r5EN1Haz_LfuNCdLvSh1jaoWlt3ZWbsAtdWB8vyZmvu-SufndB3p4el7M5Xbw-v8weFtSigp5yZAiVEx6U4BZR1J5NwVomrES1aoRcCVdz9PnWgJYrrKa8Yp5JXVWucrwgN6PvIYb3waXebMMQ9znSoNYCUen8ZkFwZNkYUorOm0Nsd3U8GgbmuxIzVmIy1_xUkmdB-ChKmbxfu_hn_Y_qC9ugYXU</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Carranza, Daniel</creator><creator>Kapulkin, Krzysztof</creator><creator>Tonks, Andrew</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>The Hurewicz theorem for cubical homology</title><author>Carranza, Daniel ; Kapulkin, Krzysztof ; Tonks, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-321206e4f0743c224af190cc14c527db45d4ea32f0ccb085d269361f15866e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carranza, Daniel</creatorcontrib><creatorcontrib>Kapulkin, Krzysztof</creatorcontrib><creatorcontrib>Tonks, Andrew</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carranza, Daniel</au><au>Kapulkin, Krzysztof</au><au>Tonks, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hurewicz theorem for cubical homology</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>305</volume><issue>4</issue><artnum>61</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We give an elementary proof of the Hurewicz theorem relating homotopy and homology groups of a cubical Kan complex. Our approach is based on the notion of a loop space of a cubical set, developed in a companion paper “Homotopy groups of cubical sets” by the first two authors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-023-03352-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2023-12, Vol.305 (4), Article 61
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2884227802
source SpringerLink Journals
subjects Homology
Mathematics
Mathematics and Statistics
Theorems
title The Hurewicz theorem for cubical homology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hurewicz%20theorem%20for%20cubical%20homology&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Carranza,%20Daniel&rft.date=2023-12-01&rft.volume=305&rft.issue=4&rft.artnum=61&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-023-03352-0&rft_dat=%3Cproquest_cross%3E2884227802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884227802&rft_id=info:pmid/&rfr_iscdi=true