Interior Eigensolver Based on Rational Filter with Composite rule

Contour-integral-based rational filter leads to interior eigensolvers for non-Hermitian generalized eigenvalue problems. Based on Zolotarev's third problem, this paper proves the asymptotic optimality of the trapezoidal quadrature of the contour integral in terms of the spectrum separation. A c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Chen, Yuer, Li, Yingzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Yuer
Li, Yingzhou
description Contour-integral-based rational filter leads to interior eigensolvers for non-Hermitian generalized eigenvalue problems. Based on Zolotarev's third problem, this paper proves the asymptotic optimality of the trapezoidal quadrature of the contour integral in terms of the spectrum separation. A composite rule of the trapezoidal quadrature is derived, and two interior eigensolvers are proposed based on it. Both eigensolvers adopt direct factorization and multi-shift generalized minimal residual method for the inner and outer rational functions, respectively. The first eigensolver fixes the order of the outer rational function and applies the subspace iterations to achieve convergence, whereas the second eigensolver doubles the order of the outer rational function every iteration to achieve convergence without subspace iteration. The efficiency and stability of proposed eigensolvers are demonstrated on synthetic and practical sparse matrix pencils.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2883994467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883994467</sourcerecordid><originalsourceid>FETCH-proquest_journals_28839944673</originalsourceid><addsrcrecordid>eNqNzE0KwjAQQOEgCBbtHQZcF2rS36WWFt2K-xJw1JSYqZlUr28XHsDV23y8hYikUrukyqRciZh5SNNUFqXMcxWJ_ckF9IY8tOaOjsm-0cNBM16BHJx1MOS0hc7Y2cHHhAc09ByJTUDwk8WNWN60ZYx_XYtt116aYzJ6ek3IoR9o8vODe1lVqq6zrCjVf-oLfBw5kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883994467</pqid></control><display><type>article</type><title>Interior Eigensolver Based on Rational Filter with Composite rule</title><source>Free E- Journals</source><creator>Chen, Yuer ; Li, Yingzhou</creator><creatorcontrib>Chen, Yuer ; Li, Yingzhou</creatorcontrib><description>Contour-integral-based rational filter leads to interior eigensolvers for non-Hermitian generalized eigenvalue problems. Based on Zolotarev's third problem, this paper proves the asymptotic optimality of the trapezoidal quadrature of the contour integral in terms of the spectrum separation. A composite rule of the trapezoidal quadrature is derived, and two interior eigensolvers are proposed based on it. Both eigensolvers adopt direct factorization and multi-shift generalized minimal residual method for the inner and outer rational functions, respectively. The first eigensolver fixes the order of the outer rational function and applies the subspace iterations to achieve convergence, whereas the second eigensolver doubles the order of the outer rational function every iteration to achieve convergence without subspace iteration. The efficiency and stability of proposed eigensolvers are demonstrated on synthetic and practical sparse matrix pencils.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Contours ; Convergence ; Eigenvalues ; Quadratures ; Rational functions ; Sparse matrices</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chen, Yuer</creatorcontrib><creatorcontrib>Li, Yingzhou</creatorcontrib><title>Interior Eigensolver Based on Rational Filter with Composite rule</title><title>arXiv.org</title><description>Contour-integral-based rational filter leads to interior eigensolvers for non-Hermitian generalized eigenvalue problems. Based on Zolotarev's third problem, this paper proves the asymptotic optimality of the trapezoidal quadrature of the contour integral in terms of the spectrum separation. A composite rule of the trapezoidal quadrature is derived, and two interior eigensolvers are proposed based on it. Both eigensolvers adopt direct factorization and multi-shift generalized minimal residual method for the inner and outer rational functions, respectively. The first eigensolver fixes the order of the outer rational function and applies the subspace iterations to achieve convergence, whereas the second eigensolver doubles the order of the outer rational function every iteration to achieve convergence without subspace iteration. The efficiency and stability of proposed eigensolvers are demonstrated on synthetic and practical sparse matrix pencils.</description><subject>Contours</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Quadratures</subject><subject>Rational functions</subject><subject>Sparse matrices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzE0KwjAQQOEgCBbtHQZcF2rS36WWFt2K-xJw1JSYqZlUr28XHsDV23y8hYikUrukyqRciZh5SNNUFqXMcxWJ_ckF9IY8tOaOjsm-0cNBM16BHJx1MOS0hc7Y2cHHhAc09ByJTUDwk8WNWN60ZYx_XYtt116aYzJ6ek3IoR9o8vODe1lVqq6zrCjVf-oLfBw5kA</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Chen, Yuer</creator><creator>Li, Yingzhou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241008</creationdate><title>Interior Eigensolver Based on Rational Filter with Composite rule</title><author>Chen, Yuer ; Li, Yingzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28839944673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contours</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Quadratures</topic><topic>Rational functions</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuer</creatorcontrib><creatorcontrib>Li, Yingzhou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuer</au><au>Li, Yingzhou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Interior Eigensolver Based on Rational Filter with Composite rule</atitle><jtitle>arXiv.org</jtitle><date>2024-10-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Contour-integral-based rational filter leads to interior eigensolvers for non-Hermitian generalized eigenvalue problems. Based on Zolotarev's third problem, this paper proves the asymptotic optimality of the trapezoidal quadrature of the contour integral in terms of the spectrum separation. A composite rule of the trapezoidal quadrature is derived, and two interior eigensolvers are proposed based on it. Both eigensolvers adopt direct factorization and multi-shift generalized minimal residual method for the inner and outer rational functions, respectively. The first eigensolver fixes the order of the outer rational function and applies the subspace iterations to achieve convergence, whereas the second eigensolver doubles the order of the outer rational function every iteration to achieve convergence without subspace iteration. The efficiency and stability of proposed eigensolvers are demonstrated on synthetic and practical sparse matrix pencils.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2883994467
source Free E- Journals
subjects Contours
Convergence
Eigenvalues
Quadratures
Rational functions
Sparse matrices
title Interior Eigensolver Based on Rational Filter with Composite rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Interior%20Eigensolver%20Based%20on%20Rational%20Filter%20with%20Composite%20rule&rft.jtitle=arXiv.org&rft.au=Chen,%20Yuer&rft.date=2024-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2883994467%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883994467&rft_id=info:pmid/&rfr_iscdi=true