Proportional Fairness in Clustering: A Social Choice Perspective
We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known appro...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kellerhals, Leon Peters, Jannik |
description | We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al. [ICML'19], but also to individual fairness [Jung et al., FORC'20] and the "core" [Li et al. ICML'21]. In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters [EC'23] imply approximations to these stronger guarantees. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2883992295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883992295</sourcerecordid><originalsourceid>FETCH-proquest_journals_28839922953</originalsourceid><addsrcrecordid>eNqNzMEKgkAQgOElCJLyHRY6CzabpZ0KKToKdReRqUZkx2bWnj8PPUCn__Lxz0wEzm2SfAuwMLFql6Yp7PaQZS4yx0p4YAnEvuntpSHxqGrJ27IfNaCQfx7syd64pQmUL6YWbYWiA7aBPrgy80fTK8a_Ls36cr6X12QQfo-ooe54lGmuNeS5KwqAInP_qS8tkDj9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883992295</pqid></control><display><type>article</type><title>Proportional Fairness in Clustering: A Social Choice Perspective</title><source>Free E- Journals</source><creator>Kellerhals, Leon ; Peters, Jannik</creator><creatorcontrib>Kellerhals, Leon ; Peters, Jannik</creatorcontrib><description>We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al. [ICML'19], but also to individual fairness [Jung et al., FORC'20] and the "core" [Li et al. ICML'21]. In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters [EC'23] imply approximations to these stronger guarantees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Clustering ; Mathematical analysis</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kellerhals, Leon</creatorcontrib><creatorcontrib>Peters, Jannik</creatorcontrib><title>Proportional Fairness in Clustering: A Social Choice Perspective</title><title>arXiv.org</title><description>We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al. [ICML'19], but also to individual fairness [Jung et al., FORC'20] and the "core" [Li et al. ICML'21]. In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters [EC'23] imply approximations to these stronger guarantees.</description><subject>Approximation</subject><subject>Clustering</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzMEKgkAQgOElCJLyHRY6CzabpZ0KKToKdReRqUZkx2bWnj8PPUCn__Lxz0wEzm2SfAuwMLFql6Yp7PaQZS4yx0p4YAnEvuntpSHxqGrJ27IfNaCQfx7syd64pQmUL6YWbYWiA7aBPrgy80fTK8a_Ls36cr6X12QQfo-ooe54lGmuNeS5KwqAInP_qS8tkDj9</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Kellerhals, Leon</creator><creator>Peters, Jannik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231027</creationdate><title>Proportional Fairness in Clustering: A Social Choice Perspective</title><author>Kellerhals, Leon ; Peters, Jannik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28839922953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Clustering</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kellerhals, Leon</creatorcontrib><creatorcontrib>Peters, Jannik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellerhals, Leon</au><au>Peters, Jannik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Proportional Fairness in Clustering: A Social Choice Perspective</atitle><jtitle>arXiv.org</jtitle><date>2023-10-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al. [ICML'19], but also to individual fairness [Jung et al., FORC'20] and the "core" [Li et al. ICML'21]. In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters [EC'23] imply approximations to these stronger guarantees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2883992295 |
source | Free E- Journals |
subjects | Approximation Clustering Mathematical analysis |
title | Proportional Fairness in Clustering: A Social Choice Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Proportional%20Fairness%20in%20Clustering:%20A%20Social%20Choice%20Perspective&rft.jtitle=arXiv.org&rft.au=Kellerhals,%20Leon&rft.date=2023-10-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2883992295%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883992295&rft_id=info:pmid/&rfr_iscdi=true |