Paper Recommendation via Correlation Pattern Mining and Attention Mechanism
In this paper, we improve the efficiency and effectiveness of the matrix factorization method in the paper recommendation system. We mainly address two problems. First, the vectors based on citation networks are undertrained because newly added papers are rarely cited. Second, current algorithms are...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2023-10, Vol.2023 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of sensors |
container_volume | 2023 |
creator | Huang, Weiming Liu, Baisong Wang, Zhaoliang |
description | In this paper, we improve the efficiency and effectiveness of the matrix factorization method in the paper recommendation system. We mainly address two problems. First, the vectors based on citation networks are undertrained because newly added papers are rarely cited. Second, current algorithms are mainly based on keyword search or global popularity and lack the organic combination of considering personalized interest and global popularity. To address the above two issues for the paper recommender, we propose a matrix factorization model that combines popularity analysis and attention mechanisms. The model effectively fuses the similarity of the citation network and topic using the multiplicative law, which can alleviate the data sparsity problem. Especially for cold-start papers, we add second-order neighbor nodes to makeup for the problem that newly joined papers don’t get enough training. We propose a keyword attention mechanism that combines user preferences and global popularity to personalize and balance the popularity of papers. Through comprehensive experiments on the CiteULike dataset, we show that our method can significantly improve the paper recommendation effectiveness. |
doi_str_mv | 10.1155/2023/3311363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2883383069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883383069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bd255e16fcaa8e81fafb93e657119ed7f278d676a46576f39fc24a653ff389093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f8CCR12bZJqPPZbFL2yxiIK3kO4mNqWbXZOt4r931y0ePc3MOw8z8CB0TvA1IYxNKKYwASAEOBygEeFSpIJyefjXs7djdBLjBmMOAmCEHpe6MSF5NkVdVcaXunW1Tz6dTvI6BLMd5qVuWxN8snDe-fdE-zKZdYn_XS5MsdbexeoUHVm9jeZsX8fo9fbmJb9P5093D_lsnhbASZuuSsqYIdwWWksjidV2lYHhTBCSmVJYKmTJBdfTLuIWMlvQqeYMrAWZ4QzG6GK424T6Y2diqzb1LvjupaJSAkjAvKeuBqoIdYzBWNUEV-nwrQhWvS7V61J7XR1-OeBr11n4cv_TP9DqaXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883383069</pqid></control><display><type>article</type><title>Paper Recommendation via Correlation Pattern Mining and Attention Mechanism</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Weiming ; Liu, Baisong ; Wang, Zhaoliang</creator><contributor>Liu, Jin ; Jin Liu</contributor><creatorcontrib>Huang, Weiming ; Liu, Baisong ; Wang, Zhaoliang ; Liu, Jin ; Jin Liu</creatorcontrib><description>In this paper, we improve the efficiency and effectiveness of the matrix factorization method in the paper recommendation system. We mainly address two problems. First, the vectors based on citation networks are undertrained because newly added papers are rarely cited. Second, current algorithms are mainly based on keyword search or global popularity and lack the organic combination of considering personalized interest and global popularity. To address the above two issues for the paper recommender, we propose a matrix factorization model that combines popularity analysis and attention mechanisms. The model effectively fuses the similarity of the citation network and topic using the multiplicative law, which can alleviate the data sparsity problem. Especially for cold-start papers, we add second-order neighbor nodes to makeup for the problem that newly joined papers don’t get enough training. We propose a keyword attention mechanism that combines user preferences and global popularity to personalize and balance the popularity of papers. Through comprehensive experiments on the CiteULike dataset, we show that our method can significantly improve the paper recommendation effectiveness.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2023/3311363</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Citations ; Cold ; Collaboration ; Data mining ; Effectiveness ; Factorization ; Information overload ; Keywords ; Methods ; Pattern analysis ; Performance evaluation ; Popularity ; Recommender systems ; Search engines ; Sparsity</subject><ispartof>Journal of sensors, 2023-10, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Weiming Huang et al.</rights><rights>Copyright © 2023 Weiming Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-bd255e16fcaa8e81fafb93e657119ed7f278d676a46576f39fc24a653ff389093</cites><orcidid>0000-0002-4028-0698 ; 0000-0003-0401-6037 ; 0000-0003-3693-2072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Liu, Jin</contributor><contributor>Jin Liu</contributor><creatorcontrib>Huang, Weiming</creatorcontrib><creatorcontrib>Liu, Baisong</creatorcontrib><creatorcontrib>Wang, Zhaoliang</creatorcontrib><title>Paper Recommendation via Correlation Pattern Mining and Attention Mechanism</title><title>Journal of sensors</title><description>In this paper, we improve the efficiency and effectiveness of the matrix factorization method in the paper recommendation system. We mainly address two problems. First, the vectors based on citation networks are undertrained because newly added papers are rarely cited. Second, current algorithms are mainly based on keyword search or global popularity and lack the organic combination of considering personalized interest and global popularity. To address the above two issues for the paper recommender, we propose a matrix factorization model that combines popularity analysis and attention mechanisms. The model effectively fuses the similarity of the citation network and topic using the multiplicative law, which can alleviate the data sparsity problem. Especially for cold-start papers, we add second-order neighbor nodes to makeup for the problem that newly joined papers don’t get enough training. We propose a keyword attention mechanism that combines user preferences and global popularity to personalize and balance the popularity of papers. Through comprehensive experiments on the CiteULike dataset, we show that our method can significantly improve the paper recommendation effectiveness.</description><subject>Algorithms</subject><subject>Citations</subject><subject>Cold</subject><subject>Collaboration</subject><subject>Data mining</subject><subject>Effectiveness</subject><subject>Factorization</subject><subject>Information overload</subject><subject>Keywords</subject><subject>Methods</subject><subject>Pattern analysis</subject><subject>Performance evaluation</subject><subject>Popularity</subject><subject>Recommender systems</subject><subject>Search engines</subject><subject>Sparsity</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f8CCR12bZJqPPZbFL2yxiIK3kO4mNqWbXZOt4r931y0ePc3MOw8z8CB0TvA1IYxNKKYwASAEOBygEeFSpIJyefjXs7djdBLjBmMOAmCEHpe6MSF5NkVdVcaXunW1Tz6dTvI6BLMd5qVuWxN8snDe-fdE-zKZdYn_XS5MsdbexeoUHVm9jeZsX8fo9fbmJb9P5093D_lsnhbASZuuSsqYIdwWWksjidV2lYHhTBCSmVJYKmTJBdfTLuIWMlvQqeYMrAWZ4QzG6GK424T6Y2diqzb1LvjupaJSAkjAvKeuBqoIdYzBWNUEV-nwrQhWvS7V61J7XR1-OeBr11n4cv_TP9DqaXk</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Huang, Weiming</creator><creator>Liu, Baisong</creator><creator>Wang, Zhaoliang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4028-0698</orcidid><orcidid>https://orcid.org/0000-0003-0401-6037</orcidid><orcidid>https://orcid.org/0000-0003-3693-2072</orcidid></search><sort><creationdate>20231018</creationdate><title>Paper Recommendation via Correlation Pattern Mining and Attention Mechanism</title><author>Huang, Weiming ; Liu, Baisong ; Wang, Zhaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bd255e16fcaa8e81fafb93e657119ed7f278d676a46576f39fc24a653ff389093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Citations</topic><topic>Cold</topic><topic>Collaboration</topic><topic>Data mining</topic><topic>Effectiveness</topic><topic>Factorization</topic><topic>Information overload</topic><topic>Keywords</topic><topic>Methods</topic><topic>Pattern analysis</topic><topic>Performance evaluation</topic><topic>Popularity</topic><topic>Recommender systems</topic><topic>Search engines</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weiming</creatorcontrib><creatorcontrib>Liu, Baisong</creatorcontrib><creatorcontrib>Wang, Zhaoliang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Weiming</au><au>Liu, Baisong</au><au>Wang, Zhaoliang</au><au>Liu, Jin</au><au>Jin Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paper Recommendation via Correlation Pattern Mining and Attention Mechanism</atitle><jtitle>Journal of sensors</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In this paper, we improve the efficiency and effectiveness of the matrix factorization method in the paper recommendation system. We mainly address two problems. First, the vectors based on citation networks are undertrained because newly added papers are rarely cited. Second, current algorithms are mainly based on keyword search or global popularity and lack the organic combination of considering personalized interest and global popularity. To address the above two issues for the paper recommender, we propose a matrix factorization model that combines popularity analysis and attention mechanisms. The model effectively fuses the similarity of the citation network and topic using the multiplicative law, which can alleviate the data sparsity problem. Especially for cold-start papers, we add second-order neighbor nodes to makeup for the problem that newly joined papers don’t get enough training. We propose a keyword attention mechanism that combines user preferences and global popularity to personalize and balance the popularity of papers. Through comprehensive experiments on the CiteULike dataset, we show that our method can significantly improve the paper recommendation effectiveness.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/3311363</doi><orcidid>https://orcid.org/0000-0002-4028-0698</orcidid><orcidid>https://orcid.org/0000-0003-0401-6037</orcidid><orcidid>https://orcid.org/0000-0003-3693-2072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2023-10, Vol.2023 (1) |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2883383069 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Citations Cold Collaboration Data mining Effectiveness Factorization Information overload Keywords Methods Pattern analysis Performance evaluation Popularity Recommender systems Search engines Sparsity |
title | Paper Recommendation via Correlation Pattern Mining and Attention Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paper%20Recommendation%20via%20Correlation%20Pattern%20Mining%20and%20Attention%20Mechanism&rft.jtitle=Journal%20of%20sensors&rft.au=Huang,%20Weiming&rft.date=2023-10-18&rft.volume=2023&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2023/3311363&rft_dat=%3Cproquest_cross%3E2883383069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883383069&rft_id=info:pmid/&rfr_iscdi=true |