Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning
An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previ...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2023, Vol.14 (9) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 14 |
creator | Alam, Md. Safiul Roy, Anirban Majumder, Partha Protim Khushbu, Sharun Akter |
description | An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previously unheard-of insights into how this demographic perceives online safety, shedding light on an essential yet underappreciated aspect of their digital lives. This exceptional study's original research increases the body of knowledge of online safety and sets the road for policy recommendations and intervention tactics that will enable Bangladesh to become a global leader in internet security. |
doi_str_mv | 10.14569/IJACSA.2023.0140976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2883174287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883174287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-1b603d41be8c3f30b3c90dc17d2286d94dd97de8e441ace8f8466fdeafa893033</originalsourceid><addsrcrecordid>eNotkE9PAjEQxTdGEwnyDTw08bzYf9t2j4iiGIgmaOKtKe0UFteC7WLCt3cXmMPMy5uXmeSXZbcEDwkvRHk_fR2NF6MhxZQNMeG4lOIi61FSiLwoJL48apUTLL-us0FKG9wWK6lQrJd9v0dwlW2qsELNGtAM_qBGW48WxkNzQBOAutu1zoMJq9o4SOsKTUMDMUCD9glianuXeTSNQfMqdNoEh-bGrqvQ3TSxM2-yK2_qBIPz7Gefk6eP8Us-e3uejkez3FLJm5wsBWaOkyUoyzzDS2ZL7CyRjlIlXMmdK6UDBZwTY0F5xYXwDow3qmSYsX52d7q7i9vfPaRGb7b7GNqXmirFiORUyTbFTykbtylF8HoXqx8TD5pgfSSrT2R1R1afybJ_mH1slw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883174287</pqid></control><display><type>article</type><title>Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alam, Md. Safiul ; Roy, Anirban ; Majumder, Partha Protim ; Khushbu, Sharun Akter</creator><creatorcontrib>Alam, Md. Safiul ; Roy, Anirban ; Majumder, Partha Protim ; Khushbu, Sharun Akter</creatorcontrib><description>An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previously unheard-of insights into how this demographic perceives online safety, shedding light on an essential yet underappreciated aspect of their digital lives. This exceptional study's original research increases the body of knowledge of online safety and sets the road for policy recommendations and intervention tactics that will enable Bangladesh to become a global leader in internet security.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.0140976</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Artificial intelligence ; Bullying ; Computer science ; Cybersecurity ; Data mining ; Internet ; Internet access ; Internet service providers ; Machine learning ; Safety ; Virtual communities</subject><ispartof>International journal of advanced computer science & applications, 2023, Vol.14 (9)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Alam, Md. Safiul</creatorcontrib><creatorcontrib>Roy, Anirban</creatorcontrib><creatorcontrib>Majumder, Partha Protim</creatorcontrib><creatorcontrib>Khushbu, Sharun Akter</creatorcontrib><title>Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning</title><title>International journal of advanced computer science & applications</title><description>An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previously unheard-of insights into how this demographic perceives online safety, shedding light on an essential yet underappreciated aspect of their digital lives. This exceptional study's original research increases the body of knowledge of online safety and sets the road for policy recommendations and intervention tactics that will enable Bangladesh to become a global leader in internet security.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bullying</subject><subject>Computer science</subject><subject>Cybersecurity</subject><subject>Data mining</subject><subject>Internet</subject><subject>Internet access</subject><subject>Internet service providers</subject><subject>Machine learning</subject><subject>Safety</subject><subject>Virtual communities</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE9PAjEQxTdGEwnyDTw08bzYf9t2j4iiGIgmaOKtKe0UFteC7WLCt3cXmMPMy5uXmeSXZbcEDwkvRHk_fR2NF6MhxZQNMeG4lOIi61FSiLwoJL48apUTLL-us0FKG9wWK6lQrJd9v0dwlW2qsELNGtAM_qBGW48WxkNzQBOAutu1zoMJq9o4SOsKTUMDMUCD9glianuXeTSNQfMqdNoEh-bGrqvQ3TSxM2-yK2_qBIPz7Gefk6eP8Us-e3uejkez3FLJm5wsBWaOkyUoyzzDS2ZL7CyRjlIlXMmdK6UDBZwTY0F5xYXwDow3qmSYsX52d7q7i9vfPaRGb7b7GNqXmirFiORUyTbFTykbtylF8HoXqx8TD5pgfSSrT2R1R1afybJ_mH1slw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Alam, Md. Safiul</creator><creator>Roy, Anirban</creator><creator>Majumder, Partha Protim</creator><creator>Khushbu, Sharun Akter</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning</title><author>Alam, Md. Safiul ; Roy, Anirban ; Majumder, Partha Protim ; Khushbu, Sharun Akter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-1b603d41be8c3f30b3c90dc17d2286d94dd97de8e441ace8f8466fdeafa893033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bullying</topic><topic>Computer science</topic><topic>Cybersecurity</topic><topic>Data mining</topic><topic>Internet</topic><topic>Internet access</topic><topic>Internet service providers</topic><topic>Machine learning</topic><topic>Safety</topic><topic>Virtual communities</topic><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md. Safiul</creatorcontrib><creatorcontrib>Roy, Anirban</creatorcontrib><creatorcontrib>Majumder, Partha Protim</creatorcontrib><creatorcontrib>Khushbu, Sharun Akter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md. Safiul</au><au>Roy, Anirban</au><au>Majumder, Partha Protim</au><au>Khushbu, Sharun Akter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>9</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>An amazing combination of cutting-edge data mining and machine learning methodologies to predict the level of safety feeling among Bangladeshi internet users, which is a significant departure in this subject. By leveraging cutting-edge algorithms and innovative data sources, this work provides previously unheard-of insights into how this demographic perceives online safety, shedding light on an essential yet underappreciated aspect of their digital lives. This exceptional study's original research increases the body of knowledge of online safety and sets the road for policy recommendations and intervention tactics that will enable Bangladesh to become a global leader in internet security.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.0140976</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2023, Vol.14 (9) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2883174287 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Bullying Computer science Cybersecurity Data mining Internet Internet access Internet service providers Machine learning Safety Virtual communities |
title | Predicting the Level of Safety Feeling of Bangladeshi Internet users using Data Mining and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Level%20of%20Safety%20Feeling%20of%20Bangladeshi%20Internet%20users%20using%20Data%20Mining%20and%20Machine%20Learning&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Alam,%20Md.%20Safiul&rft.date=2023&rft.volume=14&rft.issue=9&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.0140976&rft_dat=%3Cproquest_cross%3E2883174287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883174287&rft_id=info:pmid/&rfr_iscdi=true |