Exponentially Faster Massively Parallel Maximal Matching

The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2023-10, Vol.70 (5), p.1-18, Article 34
Hauptverfasser: Behnezhad, Soheil, Hajiaghayi, Mohammadtaghi, Harris, David G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 5
container_start_page 1
container_title Journal of the ACM
container_volume 70
creator Behnezhad, Soheil
Hajiaghayi, Mohammadtaghi
Harris, David G.
description The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.
doi_str_mv 10.1145/3617360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2883004630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883004630</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRMFbx7qngwVN0Jpv9yFFKq0JFDwrewmSz0ZQ0ibuptP-9W1I9DfPej_l4jF0i3CKm4o5LVFzCEYtQCBUrLj6OWQQAaSxSxFN25v0qtJCAipieb_uute1QU9Pspgvyg3XTZ_K-_rFBeCUXDNsEaVuvaV8H81W3n-fspKLG24tDnbD3xfxt9hgvXx6eZvfLmDiIIdZcmLJMCq6U0jYTUCqdCUy55YqCLCsjhVEZlVpQoSs0kFgsJIEEtKniE3Y9zu1d972xfshX3ca1YWWeaM3DW5JDoG5GyrjOe2ervHfhXLfLEfJ9LPkhlkBejSSZ9T_0Z_4CvDZa2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883004630</pqid></control><display><type>article</type><title>Exponentially Faster Massively Parallel Maximal Matching</title><source>ACM Digital Library Complete</source><creator>Behnezhad, Soheil ; Hajiaghayi, Mohammadtaghi ; Harris, David G.</creator><creatorcontrib>Behnezhad, Soheil ; Hajiaghayi, Mohammadtaghi ; Harris, David G.</creatorcontrib><description>The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3617360</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Algorithms ; Apexes ; Computer networks ; Computing methodologies ; Distributed processing ; Graph algorithms ; Graph theory ; Massively parallel algorithms ; Matching ; Mathematics of computing</subject><ispartof>Journal of the ACM, 2023-10, Vol.70 (5), p.1-18, Article 34</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Oct 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</citedby><cites>FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</cites><orcidid>0000-0002-3021-3555 ; 0000-0002-0104-633X ; 0000-0003-4842-0533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3617360$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,778,782,2278,27907,27908,40179,75979</link.rule.ids></links><search><creatorcontrib>Behnezhad, Soheil</creatorcontrib><creatorcontrib>Hajiaghayi, Mohammadtaghi</creatorcontrib><creatorcontrib>Harris, David G.</creatorcontrib><title>Exponentially Faster Massively Parallel Maximal Matching</title><title>Journal of the ACM</title><addtitle>ACM JACM</addtitle><description>The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Computer networks</subject><subject>Computing methodologies</subject><subject>Distributed processing</subject><subject>Graph algorithms</subject><subject>Graph theory</subject><subject>Massively parallel algorithms</subject><subject>Matching</subject><subject>Mathematics of computing</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRMFbx7qngwVN0Jpv9yFFKq0JFDwrewmSz0ZQ0ibuptP-9W1I9DfPej_l4jF0i3CKm4o5LVFzCEYtQCBUrLj6OWQQAaSxSxFN25v0qtJCAipieb_uute1QU9Pspgvyg3XTZ_K-_rFBeCUXDNsEaVuvaV8H81W3n-fspKLG24tDnbD3xfxt9hgvXx6eZvfLmDiIIdZcmLJMCq6U0jYTUCqdCUy55YqCLCsjhVEZlVpQoSs0kFgsJIEEtKniE3Y9zu1d972xfshX3ca1YWWeaM3DW5JDoG5GyrjOe2ervHfhXLfLEfJ9LPkhlkBejSSZ9T_0Z_4CvDZa2Q</recordid><startdate>20231012</startdate><enddate>20231012</enddate><creator>Behnezhad, Soheil</creator><creator>Hajiaghayi, Mohammadtaghi</creator><creator>Harris, David G.</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3021-3555</orcidid><orcidid>https://orcid.org/0000-0002-0104-633X</orcidid><orcidid>https://orcid.org/0000-0003-4842-0533</orcidid></search><sort><creationdate>20231012</creationdate><title>Exponentially Faster Massively Parallel Maximal Matching</title><author>Behnezhad, Soheil ; Hajiaghayi, Mohammadtaghi ; Harris, David G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Computer networks</topic><topic>Computing methodologies</topic><topic>Distributed processing</topic><topic>Graph algorithms</topic><topic>Graph theory</topic><topic>Massively parallel algorithms</topic><topic>Matching</topic><topic>Mathematics of computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behnezhad, Soheil</creatorcontrib><creatorcontrib>Hajiaghayi, Mohammadtaghi</creatorcontrib><creatorcontrib>Harris, David G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behnezhad, Soheil</au><au>Hajiaghayi, Mohammadtaghi</au><au>Harris, David G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentially Faster Massively Parallel Maximal Matching</atitle><jtitle>Journal of the ACM</jtitle><stitle>ACM JACM</stitle><date>2023-10-12</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>34</artnum><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3617360</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3021-3555</orcidid><orcidid>https://orcid.org/0000-0002-0104-633X</orcidid><orcidid>https://orcid.org/0000-0003-4842-0533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2023-10, Vol.70 (5), p.1-18, Article 34
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_journals_2883004630
source ACM Digital Library Complete
subjects Algorithms
Apexes
Computer networks
Computing methodologies
Distributed processing
Graph algorithms
Graph theory
Massively parallel algorithms
Matching
Mathematics of computing
title Exponentially Faster Massively Parallel Maximal Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentially%20Faster%20Massively%20Parallel%20Maximal%20Matching&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Behnezhad,%20Soheil&rft.date=2023-10-12&rft.volume=70&rft.issue=5&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=34&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3617360&rft_dat=%3Cproquest_cross%3E2883004630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883004630&rft_id=info:pmid/&rfr_iscdi=true