Exponentially Faster Massively Parallel Maximal Matching
The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2023-10, Vol.70 (5), p.1-18, Article 34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Journal of the ACM |
container_volume | 70 |
creator | Behnezhad, Soheil Hajiaghayi, Mohammadtaghi Harris, David G. |
description | The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds. |
doi_str_mv | 10.1145/3617360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2883004630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2883004630</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRMFbx7qngwVN0Jpv9yFFKq0JFDwrewmSz0ZQ0ibuptP-9W1I9DfPej_l4jF0i3CKm4o5LVFzCEYtQCBUrLj6OWQQAaSxSxFN25v0qtJCAipieb_uute1QU9Pspgvyg3XTZ_K-_rFBeCUXDNsEaVuvaV8H81W3n-fspKLG24tDnbD3xfxt9hgvXx6eZvfLmDiIIdZcmLJMCq6U0jYTUCqdCUy55YqCLCsjhVEZlVpQoSs0kFgsJIEEtKniE3Y9zu1d972xfshX3ca1YWWeaM3DW5JDoG5GyrjOe2ervHfhXLfLEfJ9LPkhlkBejSSZ9T_0Z_4CvDZa2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883004630</pqid></control><display><type>article</type><title>Exponentially Faster Massively Parallel Maximal Matching</title><source>ACM Digital Library Complete</source><creator>Behnezhad, Soheil ; Hajiaghayi, Mohammadtaghi ; Harris, David G.</creator><creatorcontrib>Behnezhad, Soheil ; Hajiaghayi, Mohammadtaghi ; Harris, David G.</creatorcontrib><description>The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3617360</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Algorithms ; Apexes ; Computer networks ; Computing methodologies ; Distributed processing ; Graph algorithms ; Graph theory ; Massively parallel algorithms ; Matching ; Mathematics of computing</subject><ispartof>Journal of the ACM, 2023-10, Vol.70 (5), p.1-18, Article 34</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Oct 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</citedby><cites>FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</cites><orcidid>0000-0002-3021-3555 ; 0000-0002-0104-633X ; 0000-0003-4842-0533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3617360$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,778,782,2278,27907,27908,40179,75979</link.rule.ids></links><search><creatorcontrib>Behnezhad, Soheil</creatorcontrib><creatorcontrib>Hajiaghayi, Mohammadtaghi</creatorcontrib><creatorcontrib>Harris, David G.</creatorcontrib><title>Exponentially Faster Massively Parallel Maximal Matching</title><title>Journal of the ACM</title><addtitle>ACM JACM</addtitle><description>The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Computer networks</subject><subject>Computing methodologies</subject><subject>Distributed processing</subject><subject>Graph algorithms</subject><subject>Graph theory</subject><subject>Massively parallel algorithms</subject><subject>Matching</subject><subject>Mathematics of computing</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRMFbx7qngwVN0Jpv9yFFKq0JFDwrewmSz0ZQ0ibuptP-9W1I9DfPej_l4jF0i3CKm4o5LVFzCEYtQCBUrLj6OWQQAaSxSxFN25v0qtJCAipieb_uute1QU9Pspgvyg3XTZ_K-_rFBeCUXDNsEaVuvaV8H81W3n-fspKLG24tDnbD3xfxt9hgvXx6eZvfLmDiIIdZcmLJMCq6U0jYTUCqdCUy55YqCLCsjhVEZlVpQoSs0kFgsJIEEtKniE3Y9zu1d972xfshX3ca1YWWeaM3DW5JDoG5GyrjOe2ervHfhXLfLEfJ9LPkhlkBejSSZ9T_0Z_4CvDZa2Q</recordid><startdate>20231012</startdate><enddate>20231012</enddate><creator>Behnezhad, Soheil</creator><creator>Hajiaghayi, Mohammadtaghi</creator><creator>Harris, David G.</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3021-3555</orcidid><orcidid>https://orcid.org/0000-0002-0104-633X</orcidid><orcidid>https://orcid.org/0000-0003-4842-0533</orcidid></search><sort><creationdate>20231012</creationdate><title>Exponentially Faster Massively Parallel Maximal Matching</title><author>Behnezhad, Soheil ; Hajiaghayi, Mohammadtaghi ; Harris, David G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-835cdd2b37778e950d7895143e37a2b36fc65c79ad85ab8f1c02e1b6a0601e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Computer networks</topic><topic>Computing methodologies</topic><topic>Distributed processing</topic><topic>Graph algorithms</topic><topic>Graph theory</topic><topic>Massively parallel algorithms</topic><topic>Matching</topic><topic>Mathematics of computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behnezhad, Soheil</creatorcontrib><creatorcontrib>Hajiaghayi, Mohammadtaghi</creatorcontrib><creatorcontrib>Harris, David G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behnezhad, Soheil</au><au>Hajiaghayi, Mohammadtaghi</au><au>Harris, David G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentially Faster Massively Parallel Maximal Matching</atitle><jtitle>Journal of the ACM</jtitle><stitle>ACM JACM</stitle><date>2023-10-12</date><risdate>2023</risdate><volume>70</volume><issue>5</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>34</artnum><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n1+Ω (1) per machine.In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [15]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O(log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O(log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3617360</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3021-3555</orcidid><orcidid>https://orcid.org/0000-0002-0104-633X</orcidid><orcidid>https://orcid.org/0000-0003-4842-0533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 2023-10, Vol.70 (5), p.1-18, Article 34 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_journals_2883004630 |
source | ACM Digital Library Complete |
subjects | Algorithms Apexes Computer networks Computing methodologies Distributed processing Graph algorithms Graph theory Massively parallel algorithms Matching Mathematics of computing |
title | Exponentially Faster Massively Parallel Maximal Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentially%20Faster%20Massively%20Parallel%20Maximal%20Matching&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Behnezhad,%20Soheil&rft.date=2023-10-12&rft.volume=70&rft.issue=5&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=34&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3617360&rft_dat=%3Cproquest_cross%3E2883004630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883004630&rft_id=info:pmid/&rfr_iscdi=true |